956 resultados para Consumption pattern of Scheduled Castes
Resumo:
Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.
Resumo:
Anti-herbivory defenses support persistence of seaweeds. Little is known, however, about temporal dynamics in the induction of grazer-deterrent seaweed traits. In two induction experiments, consumption rates of the periwinkle Littorina obtusata (L.) on the brown seaweed Ascophyllum nodosum (L.) Le Jolis were measured in 3-d intervals. Changes in palatability of directly grazed A. nodosum were tested every 3 d with feeding assays using fresh and reconstituted seaweed pieces. Likewise, assays with fresh A. nodosum assessed changes in seaweed palatability in response to water-borne cues from nearby grazed conspecifics. Consumption rates of L. obtusata varied significantly during the 27-d induction phase of each experiment. Direct grazing by L. obtusata lowered palatability of fresh and reconstituted A. nodosum pieces to conspecific grazers after 15 d as well as after 6 and 12 d, respectively. After 12, 18, and 24 d, fresh A. nodosum located downstream of L. obtusata-grazed conspecifics was significantly less palatable than A. nodosum located downstream of ungrazed conspecifics. Changes in L. obtusata consumption rates and A. nodosum palatability during both induction experiments suggest temporal variation of grazer-deterrent responses, which may complicate experimental detection of inducible anti-herbivory defenses.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Natural regeneration in stone pine (Pinus pinea L.) managed forests in the Spanish Northern Plateau is not achieved successfully under current silviculture practices, constituting a main concern for forest managers. We modelled spatio-temporal features of primary dispersal to test whether (a) present low stand densities constrain natural regeneration success and (b) seed release is a climate-controlled process. The present study is based on data collected from a 6 years seed trap experiment considering different regeneration felling intensities. From a spatial perspective, we attempted alternate established kernels under different data distribution assumptions to fit a spatial model able to predict P. pinea seed rain. Due to P. pinea umbrella-like crown, models were adapted to account for crown effect through correction of distances between potential seed arrival locations and seed sources. In addition, individual tree fecundity was assessed independently from existing models, improving parameter estimation stability. Seed rain simulation enabled to calculate seed dispersal indexes for diverse silvicultural regeneration treatments. The selected spatial model of best fit (Weibull, Poisson assumption) predicted a highly clumped dispersal pattern that resulted in a proportion of gaps where no seed arrival is expected (dispersal limitation) between 0.25 and 0.30 for intermediate intensity regeneration fellings and over 0.50 for intense fellings. To describe the temporal pattern, the proportion of seeds released during monthly intervals was modelled as a function of climate variables – rainfall events – through a linear model that considered temporal autocorrelation, whereas cone opening took place over a temperature threshold. Our findings suggest the application of less intensive regeneration fellings, to be carried out after years of successful seedling establishment and, seasonally, subsequent to the main rainfall period (late fall). This schedule would avoid dispersal limitation and would allow for a complete seed release. These modifications in present silviculture practices would produce a more efficient seed shadow in managed stands.
Resumo:
The drag-flick is more efficient than hits or pushes when a penalty corner situation is in effect in field hockey. Previous research has studied the biomechanical pattern of the drag-flick, trying to find the cues for an optimal performance. On the other hand, some other studies have examined the most effective visual pick-up of relevant information in shots and goalkeeper anticipation. The aim of this study was to analyse the individual differences in the drag-flick pattern in order to provide relevant information for goalkeepers. One female skilled drag-flicker participated in the study. A VICON optoelectronic sy stem (Oxford Metrics, Oxford, UK) was used to capture the drag-flicks with six cameras. The results showed that the main significant differences between right and left shots (p<0.05) in the stick angles, stick minimum angular velocity and front foot-ball distance were when the front foot heel contacted the floor(T1) and at the minimum velocity of the stick, before the dragging action (T3). The findings showed that the most relevant information might be picked up at the ball-and-stick location before the dragging action.
Resumo:
In this work, cracking of concrete due to steel reinforcement corrosion is experimentally and numerically studied. The tests combined accelerated corrosion—to generate the cracks—with impregnation under vacuum with resin containing fluorescein—to enhance their visibility under ultraviolet light. In parallel, a model—called expansive joint element—was developed to simulate the expansion of the oxide and finite elements with an embedded adaptable cohesive crack were used to describe concrete cracking. The results show that a good agreement exists between the experimental and numerical crack patterns, which constitutes promising progress towards a comprehensive understanding of corrosion-induced cracking in reinforced concrete.
Resumo:
Interest in commercially farmed rabbit welfare has increased in recent years. As a result, new alternative housing systems have been developed, although they require evaluation in order to demonstrate their potential for improving welfare. The aim of this trial was to study the behavioural traits of rabbit does housed in 2 different types of cage (TC): conventional vs. alternative with an elevated platform, at different physiological stages (PS); lactation and gestation. Behavioural observations were carried out on 12 rabbit commercial does using continuous 24 h video recording. Independently of PS and TC, rabbit does spent most of their time on foot mats (on av. 57.7%). However, due to the use of platforms (on av. 23.0% of time), lactating does spent 36.6% less time on foot mats (P<0.001) and gestating does spent 27.0% less time on wire mesh (P<0.001) in alternative cages than in conventional cages. Alternative cages allowed for standing posture, but this behaviour was only observed in gestating does (on av. 4.6 times a day). Frequency of drinking was higher in conventional than in alternative cages (24.6 vs. 19.1 times a day; P<0.05). Gestating does housed in conventional cages reached the highest duration and frequency of interacting with neighbours (276 s/d and 4.6 times/d; P<0.05). The frequency of interacting with kits was lower in alternative than in conventional cages (2.4 vs. 8.6 times a day; P<0.01). Doe behaviour was influenced by the time of day, with less activity during the midday hours. During dark hours, rabbit does more frequently performed restless behaviour such as hyperactivity or nursing, matching the time at which rabbit does spent more time on the platform. The platform was frequently used by rabbit does, regardless of their physiological stage, and during late lactation phase, when mothers were not receptive to nursing, does housed in alternative cages used the platform as a mean to flee from kits trying to suckle. Use of the platform might lead to hygienic problems due to retained faeces on the platform and faeces and urine falling onto animals located in the lower part of the cage. The absence of stereotypies in rabbit does of this trial, suggested that animal welfare was not compromised by the type of housing (conventional or alternative cages).
Resumo:
The study of life history evolution in hominids is crucial for the discernment of when and why humans have acquired our unique maturational pattern. Because the development of dentition is critically integrated into the life cycle in mammals, the determination of the time and pattern of dental development represents an appropriate method to infer changes in life history variables that occurred during hominid evolution. Here we present evidence derived from Lower Pleistocene human fossil remains recovered from the TD6 level (Aurora stratum) of the Gran Dolina site in the Sierra de Atapuerca, northern Spain. These hominids present a pattern of development similar to that of Homo sapiens, although some aspects (e.g., delayed M3 calcification) are not as derived as that of European populations and people of European origin. This evidence, taken together with the present knowledge of cranial capacity of these and other late Early Pleistocene hominids, supports the view that as early as 0.8 Ma at least one Homo species shared with modern humans a prolonged pattern of maturation.
Resumo:
We have investigated physical distances and directions of transposition of the maize transposable element Ac in Arabidopsis thaliana. We prepared a transferred DNA (T-DNA) construct that carried a non-autonomous derivative of Ac with a site for cleavage by endonuclease I-SceI (designated dAc-I-RS element). Another cleavage site was also introduced into the T-DNA region outside dAc-I-RS. Three transgenic Arabidopsis plants were generated, each of which had a single copy of the T-DNA at a different chromosomal location. These transgenic plants were crossed with the Arabidopsis that carried the gene for Ac transposase and progeny in which dAc-I-RS had been transposed were isolated. After digestion of the genomic DNA of these progeny with endonuclease I-SceI, sizes of segment of DNA were determined by pulse-field gel electrophoresis. We also performed linkage analysis for the transposed elements and sites of mutations near the elements. Our results showed that 50% of all transposition events had occurred within 1,700 kb on the same chromosome, with 35% within 200 kb, and that the elements transposed in both directions on the chromosome with roughly equal probability. The data thus indicate that the Ac–Ds system is most useful for tagging of genes that are present within 200 kb of the chromosomal site of Ac in Arabidopsis. In addition, determination of the precise localization of the transposed dAc-I-RS element should definitely assist in map-based cloning of genes around insertion sites.
Resumo:
Following striate cortex damage in monkeys and humans there can be residual function mediated by parallel visual pathways. In humans this can sometimes be associated with a “feeling” that something has happened, especially with rapid movement or abrupt onset. For less transient events, discriminative performance may still be well above chance even when the subject reports no conscious awareness of the stimulus. In a previous study we examined parameters that yield good residual visual performance in the “blind” hemifield of a subject with unilateral damage to the primary visual cortex. With appropriate parameters we demonstrated good discriminative performance, both with and without conscious awareness of a visual event. These observations raise the possibility of imaging the brain activity generated in the “aware” and the “unaware” modes, with matched levels of discrimination performance, and hence of revealing patterns of brain activation associated with visual awareness. The intact hemifield also allows a comparison with normal vision. Here we report the results of a functional magnetic resonance imaging study on the same subject carried out under aware and unaware stimulus conditions. The results point to a shift in the pattern of activity from neocortex in the aware mode, to subcortical structures in the unaware mode. In the aware mode prestriate and dorsolateral prefrontal cortices (area 46) are active. In the unaware mode the superior colliculus is active, together with medial and orbital prefrontal cortical sites.
Resumo:
Developmental and physiological responses are regulated by light throughout the entire life cycle of higher plants. To sense changes in the light environment, plants have developed various photoreceptors, including the red/far-red light-absorbing phytochromes and blue light-absorbing cryptochromes. A wide variety of physiological responses, including most light responses, also are modulated by circadian rhythms that are generated by an endogenous oscillator, the circadian clock. To provide information on local time, circadian clocks are synchronized and entrained by environmental time cues, of which light is among the most important. Light-driven entrainment of the Arabidopsis circadian clock has been shown to be mediated by phytochrome A (phyA), phytochrome B (phyB), and cryptochromes 1 and 2, thus affirming the roles of these photoreceptors as input regulators to the plant circadian clock. Here we show that the expression of PHYB∷LUC reporter genes containing the promoter and 5′ untranslated region of the tobacco NtPHYB1 or Arabidopsis AtPHYB genes fused to the luciferase (LUC) gene exhibit robust circadian oscillations in transgenic plants. We demonstrate that the abundance of PHYB RNA retains this circadian regulation and use a PHYB∷Luc fusion protein to show that the rate of PHYB synthesis is also rhythmic. The abundance of bulk PHYB protein, however, exhibits only weak circadian rhythmicity, if any. These data suggest that photoreceptor gene expression patterns may be significant in the daily regulation of plant physiology and indicate an unexpectedly intimate relationship between the components of the input pathway and the putative circadian clock mechanism in higher plants.
Resumo:
A cDNA for a second mouse mitochondrial carbonic anhydrase (CA) called CA VB was identified by homology to the previously characterized murine CA V, now called CA VA. The full-length cDNA encodes a 317-aa precursor that contains a 33-aa classical mitochondrial leader sequence. Comparison of products expressed from cDNAs for murine CA VB and CA VA in COS cells revealed that both expressed active CAs that localized in mitochondria, and showed comparable activities in crude extracts and in mitochondria isolated from transfected COS cells. Northern blot analyses of total RNAs from mouse tissues and Western blot analyses of mouse tissue homogenates showed differences in tissue-specific expression between CA VB and CA VA. CA VB was readily detected in most tissues, while CA VA expression was limited to liver, skeletal muscle, and kidney. The human orthologue of murine CA VB was recently reported also. Comparison of the CA domain sequence of human CA VB with that reported here shows that the CA domains of CA VB are much more highly conserved between mouse and human (95% identity) than the CA domains of mouse and human CA VAs (78% identity). Analysis of phylogenetic relationships between these and other available human and mouse CA isozyme sequences revealed that mammalian CA VB evolved much more slowly than CA VA, accepting amino acid substitutions at least 4.5 times more slowly since each evolved from its respective human–mouse ancestral gene around 90 million years ago. Both the differences in tissue distribution and the much greater evolutionary constraints on CA VB sequences suggest that CA VB and CA VA have evolved to assume different physiological roles.