995 resultados para Computer tomography angiography
Resumo:
The purpose of gamma spectrometry and gamma and X-ray tomography of nuclear fuel is to determine both radionuclide concentration and integrity and deformation of nuclear fuel. The aims of this thesis have been to find out the basics of gamma spectrometry and tomography of nuclear fuel, to find out the operational mechanisms of gamma spectrometry and tomography equipment of nuclear fuel, and to identify problems that relate to these measurement techniques. In gamma spectrometry of nuclear fuel the gamma-ray flux emitted from unstable isotopes is measured using high-resolution gamma-ray spectroscopy. The production of unstable isotopes correlates with various physical fuel parameters. In gamma emission tomography the gamma-ray spectrum of irradiated nuclear fuel is recorded for several projections. In X-ray transmission tomography of nuclear fuel a radiation source emits a beam and the intensity, attenuated by the nuclear fuel, is registered by the detectors placed opposite. When gamma emission or X-ray transmission measurements are combined with tomographic image reconstruction methods, it is possible to create sectional images of the interior of nuclear fuel. MODHERATO is a computer code that simulates the operation of radioscopic or tomographic devices and it is used to predict and optimise the performance of imaging systems. Related to the X-ray tomography, MODHERATO simulations have been performed by the author. Gamma spectrometry and gamma and X-ray tomography are promising non-destructive examination methods for understanding fuel behaviour under normal, transient and accident conditions.
Resumo:
This work present the application of a computer package for generating of projection data for neutron computerized tomography, and in second part, discusses an application of neutron tomography, using the projection data obtained by Monte Carlo technique, for the detection and localization of light materials such as those containing hydrogen, concealed by heavy materials such as iron and lead. For tomographic reconstructions of the samples simulated use was made of only six equal projection angles distributed between 0º and 180º, with reconstruction making use of an algorithm (ARIEM), based on the principle of maximum entropy. With the neutron tomography it was possible to detect and locate polyethylene and water hidden by lead and iron (with 1cm-thick). Thus, it is demonstrated that thermal neutrons tomography is a viable test method which can provide important interior information about test components, so, extremely useful in routine industrial applications.
Resumo:
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Computed tomographic scanning is a precise, noinvasive surveying technique that enables the professionals to improve the precision of implant placement by building a prototype that allows the confection of surgical guides. The authors present a clinical case of anterior tooth rehabilitation with frozen homogenous bone graft and immediately loaded titanium implant using computer-guided surgery. A multislice computed tomography was realized, and a prototype was built. All the procedures were previously realized in the prototype before started in the patient. This technique allows a better surgical planning, makes the procedures more accurate, and reduces surgery time.
Resumo:
The aim of the present study was to conduct a critical literature review about the technique of computer-guided surgery in implantology to highlight the indications, purposes, immediate loading of implants and complications, protocol of fabrication, and functioning of virtual planning software. This literature review was based on OLDMEDLINE and MEDLINE databases from 2002 to 2010 using the key words "computer-guided surgery" and "implant-supported prosthesis." Thirty-four studies regarding this topic were found. According to the literature review, it was concluded that the computer-assisted surgery is an excellent treatment alternative for patients with appropriate bone quantity for implant insertion in complete and partially edentulous arches. The Procera Nobel Guide software (Nobel Biocare) was the most common software used by the authors. In addition, the flapless surgery is advantageous for positioning of implants but with accurate indication. Although the computer-guided surgery may be helpful for virtual planning of cases with severe bone resorption, the conventional surgical technique is more appropriate. The surgical guide is important for insertion of the implants regardless of the surgical technique, and the success of immediate loading after computer-guided surgery depends on the accuracy of clinical and/or laboratorial steps.
Resumo:
Introduction: The force delivered during rapid maxillary expansion (RME) produces areas of compression on the periodontal ligament of the supporting teeth. The resulting alveolar bone resorption can lead to unwanted tooth movement in the same direction. The purpose of this study was to evaluate periodontal changes by means of computed tomography after RME with tooth-tissue-borne and tooth-borne expanders. Methods: The sample comprised 8 girls, 11 to 14 years old, with Class I or II malocclusions with unilateral or bilateral posterior crossbites Four girls were treated with tooth-tissue-borne Haas-type expanders, and 4 were treated with tooth-borne Hyrax expanders. The appliances were activated up to the full 7-mm capacity of the expansion screw. Spiral CT scans were taken before expansion and after the 3-month retention period when the expander was removed. One-millimeter thick axial sections were exposed parallel to the palatal plane, comprising the dentoalveolar area and the base of the maxilla up to the inferior third of the nasal cavity. Multiplanar reconstruction was used to measure buccal and lingual bone plate thickness and buccal alveolar bone crest level by means of the computerized method. Results and Conclusions: RME reduced the buccal bone plate thickness of supporting teeth 0.6 to 0.9 mm and increased the lingual bone plate thickness 0.8 to 1.3 mm. The increase in lingual bone plate thickness of the maxillary posterior teeth was greater in the tooth-borne expansion group than in the tooth-tissue-borne group. RME induced bone dehiscences on the anchorage teeth's buccal aspect (7.1 ± 4.6 mm at the first premolars and 3.8 ± 4.4 mm at the mesiobuccal area of the first molars), especially in subjects with thinner buccal bone plates. The tooth-borne expander produced greater reduction of first premolar buccal alveolar bone crest level than did the tooth-tissue-borne expander. © 2006 American Association of Orthodontists.
Resumo:
Objective: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Study Design: Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO 4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. Results: At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R 2 > 0.93). However, the absolute CT numbers varied considerably with the anatomical location. Conclusion: The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. © 2013 Elsevier Inc.
Resumo:
A finite element analysis was used to compare the effect of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible. Four models of an human mandible were constructed. In the OR (O'ring) group, the mandible was restored with an overdenture retained by four unsplinted implants with O'ring attachment; in the BC (bar-clip) -C and BC groups, the mandibles were restored with overdentures retained by four splinted implants with bar-clip anchor associated or not with two distally placed cantilevers, respectively; in the FD (fixed denture) group, the mandible was restored with a fixed full-arch four-implant-supported prosthesis. Models were supported by the masticatory muscles and temporomandibular joints. A 100-N oblique load was applied on the left first molar. Von Mises (σvM), maximum (σmax) and minimum (σmin) principal stresses (in MPa) analyses were obtained. BC-C group exhibited the highest stress values (σvM=398.8, σmax=580.5 and σmin=-455.2) while FD group showed the lowest one (σvM=128.9, σmax=185.9 and σmin=-172.1). Within overdenture groups, the use of unsplinted implants reduced the stress level in the implant/prosthetic components (59.4% for σvM, 66.2% for σmax and 57.7% for σmin versus BC-C group) and supporting tissues (maximum stress reduction of 72% and 79.5% for σmax, and 15.7% and 85.7% for σmin on the cortical and trabecular bones, respectively). Cortical bone exhibited greater stress concentration than the trabecular bone for all groups. The use of fixed implant dentures and removable dentures retained by unsplinted implants to rehabilitate edentulous mandible reduced the stresses in the periimplant bone tissue, mucosa and implant/prosthetic components. © 2013 Elsevier Ltd.
Resumo:
The paper describes the preliminary studies of University of Minho on the use of Electric Impedance/Resistance Tomography to assess masonry structures. The study is focused on the analysis of values of current and voltage resulting from the use of an electrical source with voltage and frequency values from a distribution network. The analysis is made from results obtained through computer simulations, using a three-dimensional model of the idealized masonry structures. A finite element program was used for the simulations. Three types of electrodes were used in simulations, and the analysis of the results led to significant conclusions. Later masonry specimens were built and a series of preliminary tests were carried out in the laboratory. The comparative analysis of simulated and experimental results allowed identifying the factors that have influence on the physical results.
Resumo:
To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K2HPO4 solutions were measured. The relationship between CT number and K2HPO4 concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results The relationship between K2HPO4 concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.
Resumo:
In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP) and the various stages of each implementation were verified by quantum state tomography (QST). The results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms are presented here. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.
Resumo:
Background: To investigate indocyanine green angiography (ICGA) findings in patients with long-standing Vogt-Koyanagi-Harada (VKH) disease and their correlation with disease activity on clinical examination as well as with systemic corticosteroid therapy. Methods: Twenty-eight patients (51 eyes) with long-standing (>= 6 months from disease onset) VKH disease whose treatment was tapered based only in clinical features were prospectively included at a single center in Brazil. All patients underwent standardized clinical evaluation, which included fundus photography, fluorescein angiography and ICGA. Clinical disease activity was determined based in the Standardization in Uveitis Nomenclature Working Group. Fisher exact test and logistic regression models were used for statistical analysis. Results: Disease-related choroidal inflammation on ICGA was observed in 72.5% (31 of 51 eyes). Angiographic findings suggestive of (choroidal and/or retinal) disease activity were not observed on FA. Clinically active disease based on clinical evaluation was observed in 41.2% (21 of 51 eyes). In these 21 eyes, disease-related choroidal inflammation on ICGA was observed in 76.2% (16 of 21 eyes); in the remaining eyes (without clinical active disease) disease-related choroidal inflammation on ICGA was observed in 70.0% (21 of 30 eyes). In respect to systemic corticosteroid therapy, 10 patients (18 of 51 eyes) were under treatment with prednisone. In these 10 (18 of 51 eyes) patients, disease-related choroidal inflammation on ICGA was observed in 83.3% (15 of 18 eyes); in the remaining patients (33 of 51 eyes) disease-related choroidal inflammation on ICGA was observed in 66.7% (22 of 33 eyes). Conclusion: ICGA findings suggestive of disease-related choroidal inflammation were observed in a considerable proportion of patients with long-standing VKH disease, independent of the inflammatory status of the disease on clinical examination or current use of systemic corticosteroid. Therefore, the current study reinforces the crucial role of ICGA to assist the management and treatment of patients with long-standing VKH disease.
Resumo:
Objectives: Previous evidence supports a direct relationship between the calcium burden (volume) on post-contrast CT with the percent internal carotid artery (ICA) stenosis at the carotid bifurcation. We sought to further investigate this relationship by comparing non-enhanced CT (NECT) and digital subtraction angiography (DSA). Methods: 50 patients (aged 41-82 years) were retrospectively identified who had undergone cervical NECT and DSA. A 64-multidetector array CT (MDCT) scanner was utilised and the images reviewed using preset window widths/levels (30/300) optimised to calcium, with the volumes measured via three-dimensional reconstructive software. Stenosis measurements were performed on DSA and luminal diameter stenoses >40% were considered "significant". Volume thresholds of 0.01, 0.03, 0.06, 0.09 and 0.12 cm(3) were utilised and Pearson's correlation coefficient (r) was calculated to correlate the calcium volume with percent stenosis. Results: Of 100 carotid bifurcations, 88 were available and of these 7 were significantly stenotic. The NECT calcium volume moderately correlated with percent stenosis on DSA r=0.53 (p<0.01). A moderate-strong correlation was found between the square root of calcium volume on NECT with percent stenosis on DSA (r=0.60, p<0.01). Via a receiver operating characteristic curve, 0.06 cm(3) was determined to be the best threshold (sensitivity 100%, specificity 90.1%, negative predictive value 100% and positive predictive value 46.7%) for detecting significant stenoses. Conclusion: This preliminary investigation confirms a correlation between carotid bifurcation calcium volume and percent ICA stenosis and is promising for the optimal threshold for stenosis detection. Future studies could utilise calcium volumes to create a "score" that could predict high grade stenosis.
Resumo:
OBJECTIVE: To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. METHODS: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. RESULTS: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. CONCLUSION: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery.