969 resultados para Computer Structure
Resumo:
The molecular dynamics (MD) simulations play a very important role in science today. They have been used successfully in binding free-energy calculations and rational design of drugs and vaccines. MD simulations can help visualize and understand structures and dynamics at an atomistic level when combined with molecular graphics programs. The molecular and atomistic properties can be displayed on a computer in a time-dependent way, which opens a road toward a better understanding of the relationship of structure, dynamics, and function. In this chapter, the basics of MD are explained, together with a step-by-step description of setup and running an MD simulation.
Developing a probabilistic graphical structure from a model of mental-health clinical risk expertise
Resumo:
This paper explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. The Galatean Risk Screening Tool [1] is a psychological model for mental health risk assessment based on fuzzy sets. This paper details how the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. These semantics are formalised by a detailed specification for an XML structure used to represent the expertise. The component parts were then mapped to equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements. © Springer-Verlag 2010.
Resumo:
In this paper the main problems for computer design of materials, which would have predefined properties, with the use of artificial intelligence methods are presented. The DB on inorganic compound properties and the system of DBs on materials for electronics with completely assessed information: phase diagram DB of material systems with semiconducting phases and DB on acousto-optical, electro-optical, and nonlinear optical properties are considered. These DBs are a source of information for data analysis. Using the DBs and artificial intelligence methods we have predicted thousands of new compounds in ternary, quaternary and more complicated chemical systems and estimated some of their properties (crystal structure type, melting point, homogeneity region etc.). The comparison of our predictions with experimental data, obtained later, showed that the average reliability of predicted inorganic compounds exceeds 80%. The perspectives of computational material design with the use of artificial intelligence methods are considered.
Resumo:
Mixed-content miscellanies (very frequent in the Byzantine and mediaeval Slavic written heritage) are usually defined as collections of works with non-occupational, non-liturgical application, and texts in them are selected and arranged according to no identifiable principle. It is a “readable” type of miscellanies which were compiled mainly on the basis of the cognitive interests of compilers and readers. Just like the occupational ones, they also appeared to satisfy public needs but were intended for individual usage. My textological comparison had shown that mixed- content miscellanies often showed evidence of a stable content – some of them include the same constituent works in the same order, regardless that the manuscripts had no obvious genetic relationship. These correspondences were sufficiently numerous and distinctive that they could not be merely fortuitous, and the only sensible interpretation was that even when the operative organizational principle was not based on independently identifiable criteria, such as the church calendar, liturgical function, or thematic considerations, mixed-content miscellanies (or, at least, portions of their contents) nonetheless fell into types. In this respect, the apparent free selection and arrangement of texts in mixed-content miscellanies turns out to be illusory. The problem was – as the corpus of manuscripts that I and my colleagues needed to examine grew – our ability to keep track of the structure of each one, and to identify structural correspondences among manuscripts within the corpus, diminished. So, at the end of 1993 I addressed a letter to Prof. David Birnbaum (University of Pittsburgh, PA) with a request to help me to solve the problem. He and my colleague Andrey Boyadzhiev (Sofia University) pointed out to me that computers are well suited to recording, processing, and analyzing large amounts of data, and to identifying patterns within the data, and their proposal was that we try to develop a computer system for description of manuscripts, for their analysis and of course, for searching the data. Our collaboration in this project is now ten years old, and our talk today presents an overview of that collaboration.
Resumo:
In the paper we consider the structure of information dialogues. Our study is based on Estonian dialogue corpus which contains two kinds of dialogues – transcriptions of spoken conversations, and dialogues collected with the Wizard of Oz method. We are using two ways for describing the structure of dialogues – a typology of dialogue acts, and a system of communicative strategies. We depart from the notion of communicative strategy introduced by Kristiina Jokinen in her Constructive Dialogue Model. The analysis of our empirical material shows that people are using similar communicative strategies in telephone conversations and computer interactions. In the same time, the structure of human-human conversation is much more complicated.
Resumo:
An adaptive learning technology embedded in e-learning environments ensures choice of the structure, content, and activities for each individual learner according to the teaching team’s domain and didactic knowledge and skills. In this paper a computer-based scenario for application of an adaptive navigation technology is proposed and demonstrated on an example course topic.
Resumo:
Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.
Resumo:
Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.
Resumo:
This research examines evolving issues in applied computer science and applies economic and business analyses as well. There are two main areas. The first is internetwork communications as embodied by the Internet. The goal of the research is to devise an efficient pricing, prioritization, and incentivization plan that could be realistically implemented on the existing infrastructure. Criteria include practical and economic efficiency, and proper incentives for both users and providers. Background information on the evolution and functional operation of the Internet is given, and relevant literature is surveyed and analyzed. Economic analysis is performed on the incentive implications of the current pricing structure and organization. The problems are identified, and minimally disruptive solutions are proposed for all levels of implementation to the lowest level protocol. Practical issues are considered and performance analyses are done. The second area of research is mass market software engineering, and how this differs from classical software engineering. Software life-cycle revenues are analyzed and software pricing and timing implications are derived. A profit maximizing methodology is developed to select or defer the development of software features for inclusion in a given release. An iterative model of the stages of the software development process is developed, taking into account new communications capabilities as well as profitability. ^
Resumo:
Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles' location and motion information, range queries on current and history data, and prediction of vehicles' movement in the near future. ^ To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. ^ Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. ^ An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed. ^
Resumo:
Computer Game Playing has been an active area of research since Samuel’s first Checkers player (Samuel 1959). Recently interest beyond the classic games of Chess and Checkers has led to competitions such as the General Game Playing competition, in which players have no beforehand knowledge of the games they are to play, and the Computer Poker Competition which force players to reason about imperfect information under conditions of uncertainty. The purpose of this dissertation is to explore the area of General Game Playing both specifically and generally. On the specific side, we describe the design and implementation of our General Game Playing system OGRE. This system includes an innovative method for feature extraction that helped it to achieve second and fourth place in two international General Game Playing competitions. On the more general side, we also introduce the Regular Game Language, which goes beyond current works to provide support for both stochastic and imperfect information games as well as the more traditional games.
Resumo:
In recent years, a surprising new phenomenon has emerged in which globally-distributed online communities collaborate to create useful and sophisticated computer software. These open source software groups are comprised of generally unaffiliated individuals and organizations who work in a seemingly chaotic fashion and who participate on a voluntary basis without direct financial incentive. ^ The purpose of this research is to investigate the relationship between the social network structure of these intriguing groups and their level of output and activity, where social network structure is defined as (1) closure or connectedness within the group, (2) bridging ties which extend outside of the group, and (3) leader centrality within the group. Based on well-tested theories of social capital and centrality in teams, propositions were formulated which suggest that social network structures associated with successful open source software project communities will exhibit high levels of bridging and moderate levels of closure and leader centrality. ^ The research setting was the SourceForge hosting organization and a study population of 143 project communities was identified. Independent variables included measures of closure and leader centrality defined over conversational ties, along with measures of bridging defined over membership ties. Dependent variables included source code commits and software releases for community output, and software downloads and project site page views for community activity. A cross-sectional study design was used and archival data were extracted and aggregated for the two-year period following the first release of project software. The resulting compiled variables were analyzed using multiple linear and quadratic regressions, controlling for group size and conversational volume. ^ Contrary to theory-based expectations, the surprising results showed that successful project groups exhibited low levels of closure and that the levels of bridging and leader centrality were not important factors of success. These findings suggest that the creation and use of open source software may represent a fundamentally new socio-technical development process which disrupts the team paradigm and which triggers the need for building new theories of collaborative development. These new theories could point towards the broader application of open source methods for the creation of knowledge-based products other than software. ^
Resumo:
Since multimedia data, such as images and videos, are way more expressive and informative than ordinary text-based data, people find it more attractive to communicate and express with them. Additionally, with the rising popularity of social networking tools such as Facebook and Twitter, multimedia information retrieval can no longer be considered a solitary task. Rather, people constantly collaborate with one another while searching and retrieving information. But the very cause of the popularity of multimedia data, the huge and different types of information a single data object can carry, makes their management a challenging task. Multimedia data is commonly represented as multidimensional feature vectors and carry high-level semantic information. These two characteristics make them very different from traditional alpha-numeric data. Thus, to try to manage them with frameworks and rationales designed for primitive alpha-numeric data, will be inefficient. An index structure is the backbone of any database management system. It has been seen that index structures present in existing relational database management frameworks cannot handle multimedia data effectively. Thus, in this dissertation, a generalized multidimensional index structure is proposed which accommodates the atypical multidimensional representation and the semantic information carried by different multimedia data seamlessly from within one single framework. Additionally, the dissertation investigates the evolving relationships among multimedia data in a collaborative environment and how such information can help to customize the design of the proposed index structure, when it is used to manage multimedia data in a shared environment. Extensive experiments were conducted to present the usability and better performance of the proposed framework over current state-of-art approaches.
Resumo:
Developing analytical models that can accurately describe behaviors of Internet-scale networks is difficult. This is due, in part, to the heterogeneous structure, immense size and rapidly changing properties of today's networks. The lack of analytical models makes large-scale network simulation an indispensable tool for studying immense networks. However, large-scale network simulation has not been commonly used to study networks of Internet-scale. This can be attributed to three factors: 1) current large-scale network simulators are geared towards simulation research and not network research, 2) the memory required to execute an Internet-scale model is exorbitant, and 3) large-scale network models are difficult to validate. This dissertation tackles each of these problems. ^ First, this work presents a method for automatically enabling real-time interaction, monitoring, and control of large-scale network models. Network researchers need tools that allow them to focus on creating realistic models and conducting experiments. However, this should not increase the complexity of developing a large-scale network simulator. This work presents a systematic approach to separating the concerns of running large-scale network models on parallel computers and the user facing concerns of configuring and interacting with large-scale network models. ^ Second, this work deals with reducing memory consumption of network models. As network models become larger, so does the amount of memory needed to simulate them. This work presents a comprehensive approach to exploiting structural duplications in network models to dramatically reduce the memory required to execute large-scale network experiments. ^ Lastly, this work addresses the issue of validating large-scale simulations by integrating real protocols and applications into the simulation. With an emulation extension, a network simulator operating in real-time can run together with real-world distributed applications and services. As such, real-time network simulation not only alleviates the burden of developing separate models for applications in simulation, but as real systems are included in the network model, it also increases the confidence level of network simulation. This work presents a scalable and flexible framework to integrate real-world applications with real-time simulation.^
Resumo:
Computer Game Playing has been an active area of research since Samuel’s first Checkers player (Samuel 1959). Recently interest beyond the classic games of Chess and Checkers has led to competitions such as the General Game Playing competition, in which players have no beforehand knowledge of the games they are to play, and the Computer Poker Competition which force players to reason about imperfect information under conditions of uncertainty. The purpose of this dissertation is to explore the area of General Game Playing both specifically and generally. On the specific side, we describe the design and implementation of our General Game Playing system OGRE. This system includes an innovative method for feature extraction that helped it to achieve second and fourth place in two international General Game Playing competitions. On the more general side, we also introduce the Regular Game Language, which goes beyond current works to provide support for both stochastic and imperfect information games as well as the more traditional games.