915 resultados para Computer Aided Process
Resumo:
A oportunidade de produção de biomassa microalgal tem despertado interesse pelos diversos destinos que a mesma pode ter, seja na produção de bioenergia, como fonte de alimento ou servindo como produto da biofixação de dióxido de carbono. Em geral, a produção em larga escala de cianobactérias e microalgas é feita com acompanhamento através de análises físicoquímicas offline. Neste contexto, o objetivo deste trabalho foi monitorar a concentração celular em fotobiorreator raceway para produção de biomassa microalgal usando técnicas de aquisição digital de dados e controle de processos, pela aquisição de dados inline de iluminância, concentração de biomassa, temperatura e pH. Para tal fim foi necessário construir sensor baseado em software capaz de determinar a concentração de biomassa microalgal a partir de medidas ópticas de intensidade de radiação monocromática espalhada e desenvolver modelo matemático para a produção da biomassa microalgal no microcontrolador, utilizando algoritmo de computação natural no ajuste do modelo. Foi projetado, construído e testado durante cultivos de Spirulina sp. LEB 18, em escala piloto outdoor, um sistema autônomo de registro de informações advindas do cultivo. Foi testado um sensor de concentração de biomassa baseado na medição da radiação passante. Em uma segunda etapa foi concebido, construído e testado um sensor óptico de concentração de biomassa de Spirulina sp. LEB 18 baseado na medição da intensidade da radiação que sofre espalhamento pela suspensão da cianobactéria, em experimento no laboratório, sob condições controladas de luminosidade, temperatura e fluxo de suspensão de biomassa. A partir das medidas de espalhamento da radiação luminosa, foi construído um sistema de inferência neurofuzzy, que serve como um sensor por software da concentração de biomassa em cultivo. Por fim, a partir das concentrações de biomassa de cultivo, ao longo do tempo, foi prospectado o uso da plataforma Arduino na modelagem empírica da cinética de crescimento, usando a Equação de Verhulst. As medidas realizadas no sensor óptico baseado na medida da intensidade da radiação monocromática passante através da suspensão, usado em condições outdoor, apresentaram baixa correlação entre a concentração de biomassa e a radiação, mesmo para concentrações abaixo de 0,6 g/L. Quando da investigação do espalhamento óptico pela suspensão do cultivo, para os ângulos de 45º e 90º a radiação monocromática em 530 nm apresentou um comportamento linear crescente com a concentração, apresentando coeficiente de determinação, nos dois casos, 0,95. Foi possível construir um sensor de concentração de biomassa baseado em software, usando as informações combinadas de intensidade de radiação espalhada nos ângulos de 45º e 135º com coeficiente de determinação de 0,99. É factível realizar simultaneamente a determinação inline de variáveis do processo de cultivo de Spirulina e a modelagem cinética empírica do crescimento do micro-organismo através da equação de Verhulst, em microcontrolador Arduino.
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Resumo:
Recent research trends in computer-aided drug design have shown an increasing interest towards the implementation of advanced approaches able to deal with large amount of data. This demand arose from the awareness of the complexity of biological systems and from the availability of data provided by high-throughput technologies. As a consequence, drug research has embraced this paradigm shift exploiting approaches such as that based on networks. Indeed, the process of drug discovery can benefit from the implementation of network-based methods at different steps from target identification to drug repurposing. From this broad range of opportunities, this thesis is focused on three main topics: (i) chemical space networks (CSNs), which are designed to represent and characterize bioactive compound data sets; (ii) drug-target interactions (DTIs) prediction through a network-based algorithm that predicts missing links; (iii) COVID-19 drug research which was explored implementing COVIDrugNet, a network-based tool for COVID-19 related drugs. The main highlight emerged from this thesis is that network-based approaches can be considered useful methodologies to tackle different issues in drug research. In detail, CSNs are valuable coordinate-free, graphically accessible representations of structure-activity relationships of bioactive compounds data sets especially for medium-large libraries of molecules. DTIs prediction through the random walk with restart algorithm on heterogeneous networks can be a helpful method for target identification. COVIDrugNet is an example of the usefulness of network-based approaches for studying drugs related to a specific condition, i.e., COVID-19, and the same ‘systems-based’ approaches can be used for other diseases. To conclude, network-based tools are proving to be suitable in many applications in drug research and provide the opportunity to model and analyze diverse drug-related data sets, even large ones, also integrating different multi-domain information.
Resumo:
Maxillofacial trauma resulting from falls in elderly patients is a major social and health care concern. Most of these traumatic events involve mandibular fractures. The aim of this study was to analyze stress distributions from traumatic loads applied on the symphyseal, parasymphyseal, and mandibular body regions in the elderly edentulous mandible using finite-element analysis (FEA). Computerized tomographic analysis of an edentulous macerated human mandible of a patient approximately 65 years old was performed. The bone structure was converted into a 3-dimensional stereolithographic model, which was used to construct the computer-aided design (CAD) geometry for FEA. The mechanical properties of cortical and cancellous bone were characterized as isotropic and elastic structures, respectively, in the CAD model. The condyles were constrained to prevent free movement in the x-, y-, and z-axes during simulation. This enabled the simulation to include the presence of masticatory muscles during trauma. Three different simulations were performed. Loads of 700 N were applied perpendicular to the surface of the cortical bone in the symphyseal, parasymphyseal, and mandibular body regions. The simulation results were evaluated according to equivalent von Mises stress distributions. Traumatic load at the symphyseal region generated low stress levels in the mental region and high stress levels in the mandibular neck. Traumatic load at the parasymphyseal region concentrated the resulting stress close to the mental foramen. Traumatic load in the mandibular body generated extensive stress in the mandibular body, angle, and ramus. FEA enabled precise mapping of the stress distribution in a human elderly edentulous mandible (neck and mandibular angle) in response to 3 different traumatic load conditions. This knowledge can help guide emergency responders as they evaluate patients after a traumatic event.
Resumo:
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Resumo:
Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]
Resumo:
Considering the difficulties in finding good-quality images for the development and test of computer-aided diagnosis (CAD), this paper presents a public online mammographic images database free for all interested viewers and aimed to help develop and evaluate CAD schemes. The digitalization of the mammographic images is made with suitable contrast and spatial resolution for processing purposes. The broad recuperation system allows the user to search for different images, exams, or patient characteristics. Comparison with other databases currently available has shown that the presented database has a sufficient number of images, is of high quality, and is the only one to include a functional search system.
Resumo:
Template matching is a technique widely used for finding patterns in digital images. A good template matching should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB. In the present study, the receptor-independent, RI, 4D-QSAR method has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 81 thymidine analogues, and two corresponding subsets, reported as inhibitors of TMPKmt. The resulting optimized models are not only statistically significant with r (2) ranging from 0.83 to 0.92 and q (2) from 0.78 to 0.88, but also are robustly predictive based on test set predictions. The most and the least potent inhibitors in their respective postulated active conformations, derived from each of the models, were docked in the active site of the TMPKmt crystal structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. Moreover, the QSAR models provide insights regarding a probable mechanism of action of the analogues.
Resumo:
Dietary changes associated with drug therapy can reduce high serum cholesterol levels and dramatically decrease the risk of coronary artery disease, stroke, and overall mortality. Statins are hypolipemic drugs that are effective in the reduction of cholesterol serum levels, attenuating cholesterol synthesis in liver by competitive inhibition regarding the substrate or molecular target HMG-CoA reductase. We have herewith used computer-aided molecular design tools, i.e., flexible docking, virtual screening in large data bases, molecular interaction fields to propose novel potential HMG-CoA reductase inhibitors that are promising for the treatment of hypercholesterolemia.
Resumo:
A long-standing challenge of content-based image retrieval (CBIR) systems is the definition of a suitable distance function to measure the similarity between images in an application context which complies with the human perception of similarity. In this paper, we present a new family of distance functions, called attribute concurrence influence distances (AID), which serve to retrieve images by similarity. These distances address an important aspect of the psychophysical notion of similarity in comparisons of images: the effect of concurrent variations in the values of different image attributes. The AID functions allow for comparisons of feature vectors by choosing one of two parameterized expressions: one targeting weak attribute concurrence influence and the other for strong concurrence influence. This paper presents the mathematical definition and implementation of the AID family for a two-dimensional feature space and its extension to any dimension. The composition of the AID family with L (p) distance family is considered to propose a procedure to determine the best distance for a specific application. Experimental results involving several sets of medical images demonstrate that, taking as reference the perception of the specialist in the field (radiologist), the AID functions perform better than the general distance functions commonly used in CBIR.
Resumo:
Purpose of review To identify and discuss recent research studies that propose innovative psychosocial interventions in old age psychiatry. Recent findings Studies have shown that cognitive training research for healthy elderly has advanced in several ways, particularly in the refinement of study design and methodology. Studies have included larger samples and longer training protocols. Interestingly, new research has shown changes in biological markers associated with learning and memory after cognitive training. Among mild cognitive impairment patients, results have demonstrated that they benefit from interventions displaying cognitive plasticity. Rehabilitation studies involving dementia patients have suggested the efficacy of combined treatment approaches, and light and music therapies have shown promising effects. For psychiatric disorders, innovations have included improvements in well known techniques such as cognitive behavior therapy, studies in subpopulations with comorbidities, as well as the use of new computer-aided resources. Summary Research evidence on innovative interventions in old age psychiatry suggests that this exciting field is moving forward by means of methodological refinements and testing of creative new ideas.
Resumo:
Text serves as a sequel to 'Computational and Constructive Design Theory,' c1996; containing research papers and surveys of recent research work on design construction and computer-aided study of designs. For researchers in theory of computational designs.