980 resultados para Complex products
Resumo:
This paper describes and evaluates the novel utility of network methods for understanding human interpersonal interactions within social neurobiological systems such as sports teams. We show how collective system networks are supported by the sum of interpersonal interactions that emerge from the activity of system agents (such as players in a sports team). To test this idea we trialled the methodology in analyses of intra-team collective behaviours in the team sport of water polo. We observed that the number of interactions between team members resulted in varied intra-team coordination patterns of play, differentiating between successful and unsuccessful performance outcomes. Future research on small-world networks methodologies needs to formalize measures of node connections in analyses of collective behaviours in sports teams, to verify whether a high frequency of interactions is needed between players in order to achieve competitive performance outcomes.
Resumo:
Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.
Resumo:
The relationship between change in organisations and communication about change in organisations can be analysed as a particular case of a general debate in social theory about the extent to which reality is socially constructed. Social constructivists emphasise the role of language in the construction of social realities, enacted through controlling the message agenda; material determinists assert that economic and social structural factors are more constitutive of reality as seen in strategies emphasising structural and resource interventions. Here we define a third view of language and materiality - one that leads to the potential for a reflexive, experimental approach to change based on the view that organisations are complex evolving systems.
Resumo:
This paper examines the complexities associated with educating a mobile and politically marginalised population, refugee students, in the state of Queensland, Australia. Historically, schools have been national institutions concerned with social reproduction and citizenship formation with a focus on spatially fixed populations. While education authorities in much of the developed world now acknowledge the need to prepare students for a more interconnected world of work and opportunity, they have largely failed to provide systemic support for one category of children on the move - refugees. We begin this paper with a discussion of forced migration and its links with ‘globalisation’. We then present our research findings about the educational challenges confronting individual refugee youth and schools in Queensland. This is followed with a summary of good practice in refugee education. The paper concludes with a discussion of how nation-states might play a more active role in facilitating transitions to citizenship for refugee youth.
Resumo:
The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol.2, 117–E (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ- DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.