926 resultados para Complex learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Students with specific learning disabilities (SLD) typically learn less history content than their peers without disabilities and show fewer learning gains. Even when they are provided with the same instructional strategies, many students with SLD struggle to grasp complex historical concepts and content area vocabulary. Many strategies involving technology have been used in the past to enhance learning for students with SLD in history classrooms. However, very few studies have explored the effectiveness of emerging mobile technology in K-12 history classrooms. ^ This study investigated the effects of mobile devices (iPads) as an active student response (ASR) system on the acquisition of U.S. history content of middle school students with SLD. An alternating treatments single subject design was used to compare the effects of two interventions. There were two conditions and a series of pretest probesin this study. The conditions were: (a) direct instruction and studying from handwritten notes using the interactive notebook strategy and (b) direct instruction and studying using the Quizlet App on the iPad. There were three dependent variables in this study: (a) percent correct on tests, (b) rate of correct responses per minute, and (c) rate of errors per minute. ^ A comparative analysis suggested that both interventions (studying from interactive notes and studying using Quizlet on the iPad) had varying degrees of effectiveness in increasing the learning gains of students with SLD. In most cases, both interventions were equally effective. During both interventions, all of the participants increased their percentage correct and increased their rate of correct responses. Most of the participants decreased their rate of errors. ^ The results of this study suggest that teachers of students with SLD should consider a post lesson review in the form of mobile devices as an ASR system or studying from handwritten notes paired with existing evidence-based practices to facilitate students’ knowledge in U.S. history. Future research should focus on the use of other interactive applications on various mobile operating platforms, on other social studies subjects, and should explore various testing formats such as oral question-answer and multiple choice. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we aimed to explore the potential of gamification - defined as “the use of game elements in non-game contexts” [30] - in increasing children's (aged 5 to 6) engagement with the task. This is mainly due to the fact that our world is living a technological era, and videogames are an example of this engagement by being able to maintain children’s (and adults) engagement for hours straight. For the purpose of limiting complexity, we only addressed the feedback element by introducing it with an anthropomorphic virtual agent (human-like aspect), because research shows that virtual agents (VA’s) can influence behavioural change [17], or even induce emotions on humans both through the use of feedback provided and their facial expressions, which can interpreted in the same way as of humans’ [2]. By pairing the VA with the gamification concept, we wanted to 1) create a VA that is likely to be well-received by children (appearance and behaviour), and 2) have the immediate feedback that games have, so we can give children an assessment of their actions in real-time, as opposed to waiting for feedback from someone (traditional teaching), and with this give students more chances to succeed [32, 43]. Our final system consisted on a virtual environment, where children formed words that corresponded to a given image. In order to measure the impact that the VA had on engagement, the system was developed in two versions: one version of the system was limited to provide a simple feedback environment, where the VA provided feedback, by responding with simple phrases (i.e. “correct” or “incorrect”); for the second version, the VA had a more complex approach where it tried to encourage children to complete the word – a motivational feedback - even when they weren’t succeeding. Lastly we conducted a field study with two groups of children, where one group tested the version with the simple feedback, and the other group tested the ‘motivational’ version of the system. We used a quantitative approach to analyze the collected data that measured the engagement, based on the number of tasks (words) completed and time spent with system. The results of the evaluation showed that the use of motivational feedback may carry a positive effect on engaging children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates how textbook design may influence students’ visual attention to graphics, photos and text in current geography textbooks. Eye tracking, a visual method of data collection and analysis, was utilised to precisely monitor students’ eye movements while observing geography textbook spreads. In an exploratory study utilising random sampling, the eye movements of 20 students (secondary school students 15–17 years of age and university students 20–24 years of age) were recorded. The research entities were double-page spreads of current German geography textbooks covering an identical topic, taken from five separate textbooks. A two-stage test was developed. Each participant was given the task of first looking at the entire textbook spread to determine what was being explained on the pages. In the second stage, participants solved one of the tasks from the exercise section. Overall, each participant studied five different textbook spreads and completed five set tasks. After the eye tracking study, each participant completed a questionnaire. The results may verify textbook design as one crucial factor for successful knowledge acquisition from textbooks. Based on the eye tracking documentation, learning-related challenges posed by images and complex image-text structures in textbooks are elucidated and related to educational psychology insights and findings from visual communication and textbook analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A growing body of research in higher education suggests that teachers should move away from traditional lecturing towards more active and student-focus education approaches. Several classroom techniques are available to engage students and achieve more effective teaching and better learning experiences. The purpose of this paper is to share an example of how two of them – case-based teaching, and the use of response technologies – were implemented into a graduate-level food science course. The paper focuses in particular on teaching sensory science and sensometrics, including several concrete examples used during the course, and discussing in each case some of the observed outcomes. Overall, it was observed that the particular initiatives were effective in engaging student participation and promoting a more active way of learning. Case-base teaching provided students with the opportunity to apply their knowledge and their analytical skills to complex, real-life scenarios relevant to the subject matter. The use of audience response systems further facilitated class discussion, and was extremely well received by the students, providing a more enjoyable classroom experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we aimed to explore the potential of gamification - defined as “the use of game elements in non-game contexts” [30] - in increasing children's (aged 5 to 6) engagement with the task. This is mainly due to the fact that our world is living a technological era, and videogames are an example of this engagement by being able to maintain children’s (and adults) engagement for hours straight. For the purpose of limiting complexity, we only addressed the feedback element by introducing it with an anthropomorphic virtual agent (human-like aspect), because research shows that virtual agents (VA’s) can influence behavioural change [17], or even induce emotions on humans both through the use of feedback provided and their facial expressions, which can interpreted in the same way as of humans’ [2]. By pairing the VA with the gamification concept, we wanted to 1) create a VA that is likely to be well-received by children (appearance and behaviour), and 2) have the immediate feedback that games have, so we can give children an assessment of their actions in real-time, as opposed to waiting for feedback from someone (traditional teaching), and with this give students more chances to succeed [32, 43]. Our final system consisted on a virtual environment, where children formed words that corresponded to a given image. In order to measure the impact that the VA had on engagement, the system was developed in two versions: one version of the system was limited to provide a simple feedback environment, where the VA provided feedback, by responding with simple phrases (i.e. “correct” or “incorrect”); for the second version, the VA had a more complex approach where it tried to encourage children to complete the word – a motivational feedback - even when they weren’t succeeding. Lastly we conducted a field study with two groups of children, where one group tested the version with the simple feedback, and the other group tested the ‘motivational’ version of the system. We used a quantitative approach to analyze the collected data that measured the engagement, based on the number of tasks (words) completed and time spent with system. The results of the evaluation showed that the use of motivational feedback may carry a positive effect on engaging children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Besides increasing the share of electric and hybrid vehicles, in order to comply with more stringent environmental protection limitations, in the mid-term the auto industry must improve the efficiency of the internal combustion engine and the well to wheel efficiency of the employed fuel. To achieve this target, a deeper knowledge of the phenomena that influence the mixture formation and the chemical reactions involving new synthetic fuel components is mandatory, but complex and time intensive to perform purely by experimentation. Therefore, numerical simulations play an important role in this development process, but their use can be effective only if they can be considered accurate enough to capture these variations. The most relevant models necessary for the simulation of the reacting mixture formation and successive chemical reactions have been investigated in the present work, with a critical approach, in order to provide instruments to define the most suitable approaches also in the industrial context, which is limited by time constraints and budget evaluations. To overcome these limitations, new methodologies have been developed to conjugate detailed and simplified modelling techniques for the phenomena involving chemical reactions and mixture formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large use of machine learning and deep learning algorithms, several applications have been revised or implemented, with the target of reducing the computing time of some traditional tasks by orders of magnitude. Finally, a complete workflow leveraging these new models has been defined and used for evaluating the effects of different surrogate formulations of the same experimental fuel on a proof-of-concept GDI engine model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement Learning (RL) provides a powerful framework to address sequential decision-making problems in which the transition dynamics is unknown or too complex to be represented. The RL approach is based on speculating what is the best decision to make given sample estimates obtained from previous interactions, a recipe that led to several breakthroughs in various domains, ranging from game playing to robotics. Despite their success, current RL methods hardly generalize from one task to another, and achieving the kind of generalization obtained through unsupervised pre-training in non-sequential problems seems unthinkable. Unsupervised RL has recently emerged as a way to improve generalization of RL methods. Just as its non-sequential counterpart, the unsupervised RL framework comprises two phases: An unsupervised pre-training phase, in which the agent interacts with the environment without external feedback, and a supervised fine-tuning phase, in which the agent aims to efficiently solve a task in the same environment by exploiting the knowledge acquired during pre-training. In this thesis, we study unsupervised RL via state entropy maximization, in which the agent makes use of the unsupervised interactions to pre-train a policy that maximizes the entropy of its induced state distribution. First, we provide a theoretical characterization of the learning problem by considering a convex RL formulation that subsumes state entropy maximization. Our analysis shows that maximizing the state entropy in finite trials is inherently harder than RL. Then, we study the state entropy maximization problem from an optimization perspective. Especially, we show that the primal formulation of the corresponding optimization problem can be (approximately) addressed through tractable linear programs. Finally, we provide the first practical methodologies for state entropy maximization in complex domains, both when the pre-training takes place in a single environment as well as multiple environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent widespread use of social media platforms and web services has led to a vast amount of behavioral data that can be used to model socio-technical systems. A significant part of this data can be represented as graphs or networks, which have become the prevalent mathematical framework for studying the structure and the dynamics of complex interacting systems. However, analyzing and understanding these data presents new challenges due to their increasing complexity and diversity. For instance, the characterization of real-world networks includes the need of accounting for their temporal dimension, together with incorporating higher-order interactions beyond the traditional pairwise formalism. The ongoing growth of AI has led to the integration of traditional graph mining techniques with representation learning and low-dimensional embeddings of networks to address current challenges. These methods capture the underlying similarities and geometry of graph-shaped data, generating latent representations that enable the resolution of various tasks, such as link prediction, node classification, and graph clustering. As these techniques gain popularity, there is even a growing concern about their responsible use. In particular, there has been an increased emphasis on addressing the limitations of interpretability in graph representation learning. This thesis contributes to the advancement of knowledge in the field of graph representation learning and has potential applications in a wide range of complex systems domains. We initially focus on forecasting problems related to face-to-face contact networks with time-varying graph embeddings. Then, we study hyperedge prediction and reconstruction with simplicial complex embeddings. Finally, we analyze the problem of interpreting latent dimensions in node embeddings for graphs. The proposed models are extensively evaluated in multiple experimental settings and the results demonstrate their effectiveness and reliability, achieving state-of-the-art performances and providing valuable insights into the properties of the learned representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In medicine, innovation depends on a better knowledge of the human body mechanism, which represents a complex system of multi-scale constituents. Unraveling the complexity underneath diseases proves to be challenging. A deep understanding of the inner workings comes with dealing with many heterogeneous information. Exploring the molecular status and the organization of genes, proteins, metabolites provides insights on what is driving a disease, from aggressiveness to curability. Molecular constituents, however, are only the building blocks of the human body and cannot currently tell the whole story of diseases. This is why nowadays attention is growing towards the contemporary exploitation of multi-scale information. Holistic methods are then drawing interest to address the problem of integrating heterogeneous data. The heterogeneity may derive from the diversity across data types and from the diversity within diseases. Here, four studies conducted data integration using customly designed workflows that implement novel methods and views to tackle the heterogeneous characterization of diseases. The first study devoted to determine shared gene regulatory signatures for onco-hematology and it showed partial co-regulation across blood-related diseases. The second study focused on Acute Myeloid Leukemia and refined the unsupervised integration of genomic alterations, which turned out to better resemble clinical practice. In the third study, network integration for artherosclerosis demonstrated, as a proof of concept, the impact of network intelligibility when it comes to model heterogeneous data, which showed to accelerate the identification of new potential pharmaceutical targets. Lastly, the fourth study introduced a new method to integrate multiple data types in a unique latent heterogeneous-representation that facilitated the selection of important data types to predict the tumour stage of invasive ductal carcinoma. The results of these four studies laid the groundwork to ease the detection of new biomarkers ultimately beneficial to medical practice and to the ever-growing field of Personalized Medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a consequence of the diffusion of next generation sequencing techniques, metagenomics databases have become one of the most promising repositories of information about features and behavior of microorganisms. One of the subjects that can be studied from those data are bacteria populations. Next generation sequencing techniques allow to study the bacteria population within an environment by sampling genetic material directly from it, without the needing of culturing a similar population in vitro and observing its behavior. As a drawback, it is quite complex to extract information from those data and usually there is more than one way to do that; AMR is no exception. In this study we will discuss how the quantified AMR, which regards the genotype of the bacteria, can be related to the bacteria phenotype and its actual level of resistance against the specific substance. In order to have a quantitative information about bacteria genotype, we will evaluate the resistome from the read libraries, aligning them against CARD database. With those data, we will test various machine learning algorithms for predicting the bacteria phenotype. The samples that we exploit should resemble those that could be obtained from a natural context, but are actually produced by a read libraries simulation tool. In this way we are able to design the populations with bacteria of known genotype, so that we can relay on a secure ground truth for training and testing our algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments have revealed the fundamental importance of neuromodulatory action on activity-dependent synaptic plasticity underlying behavioral learning and spatial memory formation. Neuromodulators affect synaptic plasticity through the modification of the dynamics of receptors on the synaptic membrane. However, chemical substances other than neuromodulators, such as receptors co-agonists, can influence the receptors' dynamics and thus participate in determining plasticity. Here we focus on D-serine, which has been observed to affect the activity thresholds of synaptic plasticity by co-activating NMDA receptors. We use a computational model for spatial value learning with plasticity between two place cell layers. The D-serine release is CB1R mediated and the model reproduces the impairment of spatial memory due to the astrocytic CB1R knockout for a mouse navigating in the Morris water maze. The addition of path-constraining obstacles shows how performance impairment depends on the environment's topology. The model can explain the experimental evidence and produce useful testable predictions to increase our understanding of the complex mechanisms underlying learning.