920 resultados para Combined sewer overflows.
Resumo:
This paper presents a long range and effectively error-free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system. The system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. The novel technique is first theoretically modelled using a Rician fading channel. It is shown that conventional RFID systems suffer from multi-path fading resulting in nulls in radio environments. We, for the first time, demonstrate that the nulls can be moved around by varying the phase and frequency of the interrogation signals in a multi-antenna system. As a result, much enhanced coverage can be achieved. A proof of principle prototype RFID system is built based on an Impinj R2000 transceiver. The demonstrator system shows that the new approach improves the tag detection accuracy from <50% to 100% and the tag backscatter signal strength by 10dB over a 20 m x 9 m area, compared with a conventional switched multi-antenna RFID system.
Resumo:
Plate anchors are increasingly being used to moor large floating offshore structures in deep and ultradeep water. These facilities impart substantial vertical uplift loading to plate anchors. However, extreme operating conditions such as hurricane loading often result in partial system failures, with significant change in the orientation of the remaining intact mooring lines. The purpose of this study is to investigate the undrained pure translational (parallel to plate) and torsional bearing capacity of anchor plates idealized as square and rectangular shaped plates. Moreover, the interaction response of plate anchors under combined translational and torsional loading is studied using a modified plastic limit analysis (PLA) approach. The previous PLA formulation which did not account for shear-normal force interaction on the vertical end faces of the plate provides an exact solution to the idealized problem of an infinitely thin plate but only an approximate solution to the problem of a plate of finite thickness. This is also confirmed by the three-dimensional finite element (FE) results, since the PLA values exceed FE results as the thickness of the plate increases. By incorporating the shear-normal interaction relationship in the modified solution, the torsional bearing capacity factors, as well as the plate interaction responses are enhanced as they show satisfactory agreement with the FE results. The interaction relationship is then obtained for square and rectangular plates of different aspect ratios and thicknesses. The new interaction relationships could also be used as an associated plastic failure locus for combined shear and torsional loading to predict plastic displacements and rotations in translational and torsional loading modes as well. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
A new combined Non Fertile and Uranium (CONFU) fuel assembly is proposed to limit the actinides that need long-term high-level waste storage from the pressurized water reactor (PWR) fuel cycle. In the CONFU assembly concept, ∼20% of the UO2 fuel pins are replaced with fertile free fuel hosting the transuranic elements (TRUs) generated in the previous cycle. This leads to a fuel cycle sustainable with respect to net TRU generation, and the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Feasibility of the PWR core operation and control with complete TRU recycle has been shown based on full-core three-dimensional neutronic simulation. However, gradual buildup of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fission rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 yr or longer.
Resumo:
Foundations of subsea infrastructure in deep water subjected to asymmetric environmental loads have underscored the importance of combined torsional and horizontal loading effects on the bearing capacity of rectangular shallow foundations. The purpose of this study is to investigate the undrained sliding and torsional bearing capacity of rectangular and square shallow foundations together with the interaction response under combined loading using three-dimensional finite element (3D-FE) analysis. Upper bound plastic limit analysis is employed to establish a reference value for horizontal and torsional bearing capacity, and an interaction relationship for the combined loading condition. Satisfactory agreement of plastic limit analysis (PLA) and 3D-FE results for ultimate capacity and interaction curves ensures that simple PLA solution could be used to evaluate the bearing capacity problem of foundation under combined sliding and torsion.
Resumo:
Polyfluorinated and perfluorinated compounds (PFCs) are used in numerous commercial products and have been ubiquitously detected in the environment as well as in the blood of humans and wildlife. To assess the combined effects caused by PFCs in mixtures, gene expression profiles were generated using a custom cDNA microarray to detect changes in primary cultured hepatocytes of rare minnows exposed to six individual PFCs (perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, perfluorooctane sulfonate, and 8:2 fluorotelomer alcohol) and four formulations of the PFCs mixtures. Mixtures as well as individual compounds consistently regulated a particular gene set, which suggests that these conserved genes may play a central role in the toxicity mediated by PFCs. Specifically, a number of genes regulated by the mixtures were identified in this study, which were not affected by exposure to any single component. These genes are implicated in multiple biological functions and processes, including fatty acid metabolism and transport, xenobiotic metabolism, immune responses, and oxidative stress. More than 80% of the altered genes in the PFOA- and PFOS-dominant mixture groups were of the same gene set, while the gene expression profiles from single PFOA and PFOS exposures were not as similar. This work contributes to the development of toxicogenomic approaches in combined toxicity assessment and allows for comprehensive insights into the combined action of PFCs mixtures in multiple environmental matrices. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.
Laboratory modelling of natural ventilation flows driven by the combined forces of buoyancy and wind
Resumo:
Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of similar to 30 degrees C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280-400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400-700 nm] and PAB [PAR + UV-A + UV-B: 280-700]), three temperatures (15, 22, and 30 degrees C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] . L-1). UVR caused a breakage of the spiral structure at 15 degrees C and 22 degrees C, but not at 30 degrees C. High PAR levels also induced a significant breakage at 15 degrees C and 22 degrees C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15 degrees C but was relatively high at 30 degrees C even under the treatment with UVR in 8 h. At 30 degrees C, UVR led to 93%-97% less DNA damage when compared with 15 degrees C after 8 h of exposure. UV-absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature-dependent effects of UVR on this organism are discussed in this paper.
Resumo:
Field and experimental studies were conducted to evaluate the combined impacts of cyanobacterial blooms and small algae on seasonal and long-term changes in the abundance and community structure of crustacean zooplankton in a large, eutrophic, Chinese lake, Lake Chaohu. Seasonal changes of the crustacean zooplankton from 22 sampling stations were investigated during September 2002 and August 2003, and 23 species belonging to 20 genera were recorded. Daphnia spp. dominated in spring but disappeared in mid-summer, while Bosmina coregoni and Ceriodaphnia cornuta dominated in summer and autumn. Both maximum cladoceran density (310 ind. l(-1)) and biomass (5.2 mg l(-1)) appeared in autumn. Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus were the main species of copepods. Microcystis spp. were the dominant phytoplankton species and formed dense blooms in the warm seasons. In the laboratory, inhibitory effects of small colonial Microcystis on growth and reproduction of Daphnia carinata were more remarkable than those of large ones, and population size of D. carinata was negatively correlated with density of fresh large colonial Microcystis within a density range of 0-100 mg l(-1) (r = -0.82, P < 0.05). Both field and experimental results suggested that seasonal and long-term changes in the community structure of crustacean zooplankton in the lake were shaped by cyanobacterial blooms and biomass of the small algae, respectively, i.e., colonial and filamentous cyanobacteria contributed to the summer replacement of dominant crustacean zooplankton from large Daphnia spp. to small B. coregoni and C. cornuta, while increased small algae might be responsible for the increased abundance of crustacean zooplankton during the past decades.
Resumo:
A simple, rapid and sensitive on-line method for simultaneous determination of four endocrine disruptors (17 beta-estradiol, estriol, bisphenol A and 17 alpha-ethinylestradiol) in environmental waters was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A poly(acrylamide-vinylpyridine-NAP-methylene bisacrylamide) monolith, synthesized inside a polyether ether ketone (PEEK) tube, was selected as the extraction medium. To achieve optimum extraction performance, several parameters were investigated, including extraction flow-rate, extraction time, and pH value, inorganic salt and organic solvent content of the sample matrix. By simply filtered with nylon membrane filter and adjusting the pH of samples to 6.0 with phosphoric acid, the sample solution then could be directly injected into the device for extraction. Low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method were achieved in the range of 0.006-0.10 ng/mL and 0.02-0.35 ng/mL from spiked lake waters, respectively. The calibration curves of four endocrine disruptors showed good linearity ranging from quantification limits to 50 ng/mL with a linear coefficient R-2 value above 0.9913. Good method reproducibility was also found by intra- and inter-day precisions, yielding the RSDs less than 12 and 9.8%, respectively. Finally, the proposed method was successfully applied to the determination of these compounds in several environmental waters. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Immunological methods have been developed for the diagnosis of Myxobolus rotundus but their use has been limited for the prevention and therapy of this serious parasitic pathogen. Phage display antibody libraries are a powerful technique for the development of antibodies to molecules of interest and have advantages over traditional hybridroma approaches. In the present study, four antigen fractions related to M. rotundus were prepared and a combined phage display single-chain antibody fragments (ScFv) library was constructed against this parasite. Preliminary analysis indicated that a combined antibody library of about 2.08 X 10(5) individual clones and high diversity was generated. After four rounds of screening (bio-panning) against soluble spore protein prepared from lysed, intact, mature M rotundus spores, a strain monoclonal phage display ScFv, termed pCAN-6H9, with better affinity, was isolated. The pCAN-6H9 gene fragment was sequenced and analysed. The specificity of pCAN-6H9 was further demonstrated by dot-blot. In competition enzyme-linked immunosorbent assay, both the original and enriched phage-displayed ScFv repertoire showed significant inhibition of mouse anti-M rotundus serum binding to coated antigen, while the inhibition rate of monoclonal pCAN-6H9 phage particles was only 11.83%.