988 resultados para Combined action
Resumo:
Background. Osteogenesis imperfecta (OI), also known as ""brittle bone disease,"" can be difficult to diagnose in its mild form. The authors describe a clinical case of a diagnosis of dentinogenesis imperfecta (DI), In which a literature review combined with an analysis of dental alterations led to indications of OI involvement. Case Description. Since DI can be associated with OI, the authors reviewed correlated studies and obtained a new medical history from the patient. They then conducted a radiographic and clinical examination of the dentition and submitted an affected third molar to scanning electron microscopy analysis. They compared their findings with descriptions of OI type I dental alterations in the literature and confirmed their diagnosis by means of a medical evaluation. Clinical Implications. In cases in which DI is diagnosed, patients should be examined carefully and the occurrence of OI should be considered `since, in its mild form, it might be misdiagnosed.
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
Objectives: To reevaluate the longevity and intraocular safety of recombinant adenovirus (rAd)-mediated gene delivery after subretinal injection, and to prolong transgene expression through the combination of 2 synergistic immunosuppressants. Methods: An rAd vector carrying green fluorescent protein (GFP) gene was delivered subretinally in the rat eye. The GFP expression was monitored in real time by fundus fluorescent photography. Intraocular safety was examined by observation of changes of retinal pigmentation, cell infiltration in virus-contacted area, immunophenotyping for CD4(+) and CD8(+) cytotoxic T lymphocytes, and CD68(+) macrophages, histologic findings, and dark-adapted electroretinography. Two synergistic immunosuppressants, cyclosporine and sirolimus, were used alone or in combination to prolong transgene expression by temporary immunosuppression. Results: The GFP expression peaked on day 4, dramatically decreased on day 10, and was not detectable on day 14. The decreased GFP expression was coincident with cell infiltration in virus-contacted area. Immunostaining showed that the infiltrating cells were CD4(+) and CD8(+) cytotoxic T lymphocytes and CD68(+) macrophages. Clumped retinal pigmentation and decreased b wave of dark-adapted electroretinogram were observed at 3 to 4 weeks after injection. Histologic examination confirmed rAd-induced retinal degeneration. Transient immunosuppression by cyclosporine and sirolimus, either alone or in combination, improved transgene expression, with the combination being the most efficient. The combined immunosuppression attenuated but did not retard the rAd-induced retinal damage. Conclusions: Transgene expression mediated by rAd after subretinal delivery is short-term and toxic to the retina. Combination of cyclosporine and sirolimus may act as an immunosuppressive adjunct to prolong rAd-mediated gene transfer. Clinical Relevance: The intraocular safety of rAd should be carefully considered before clinical trials are performed.
Resumo:
Laboratory studies investigated the interaction between the fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin and sublethal doses of the insecticides imidacloprid and cyromazine when applied to larvae of the Colorado potato beetle, Leptinotarsa decemlinenta (Say). When second instars were fed potato leaf discs treated with sublethal doses of imidacloprid and a range of doses of B. bassiana, a synergistic action was demonstrated. Similar results were observed when larvae were sprayed directly with B. bassiana conidia and immediately fed leaf discs treated with imidacloprid. No synergistic interaction was detected when larvae were fed leaf discs treated with sublethal doses of imidacloprid 24 h after application of R. bassiana conidia to larvae. However, a synergistic interaction was detected when larvae were fed leaf discs treated with imidacloprid and sprayed with B, bassiana conidia 24 h later. Although sublethal doses of both imidacloprid and the triazine insect growth regulator (IGR) cyromazine prolonged the duration of the second instar, only imidacloprid interacted with B. bassiana to produce a synergistic response in larval mortality. In leaf consumption studies, the highest dose of B, bassiana tested promoted feeding in inoculated second instars. Feeding was inhibited when larvae were fed foliage treated with sublethal doses of imidacloprid and significantly reduced when fed foliage treated with a sublethal dose of cyromazine. Starvation of larvae for 24 h immediately after B. bassiana treatment produced a similar result to the combined treatment of B. bassiana and imidacloprid and increased the level of mycosis when compared with B. bassiana controls. Imidacloprid treatment affected neither the rate of germination of B. bassiana conidia on the insect cuticle nor the rate at which conidia were removed from the integument after application. The statistical analysis used to detect synergism and the possible role of starvation-induced stress factors underlying the observed synergistic interactions are discussed.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Resumo:
This paper presents the results of my action research. I was involved in establishing and running a digital library that was founded by the government of South Korea. The process involved understanding the relationship between the national IT infrastructure and the success factors of the digital library. In building, the national IT infrastructure, a digital library system was implemented; it combines all existing digitized university libraries and can provide overseas information, such as foreign journal articles, instantly and freely to every Korean researcher. An empirical survey was made as a part of the action research; the survey determined user satisfaction in the newly established national digital library. After obtaining the survey results, I suggested that the current way of running the nationwide government-owned digital library should be retained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The biological reactions during the settling and decant periods of Sequencing Batch Reactors (SBRs) are generally ignored as they are not easily measured or described by modelling approaches. However, important processes are taking place, and in particular when the influent is fed into the bottom of the reactor at the same time (one of the main features of the UniFed process), the inclusion of these stages is crucial for accurate process predictions. Due to the vertical stratification of both liquid and solid components, a one-dimensional hydraulic model is combined with a modified ASM2d biological model to allow the prediction of settling velocity, sludge concentration, soluble components and biological processes during the non-mixed periods of the SBR. The model is calibrated on a full-scale UniFed SBR system with tracer breakthrough tests, depth profiles of particulate and soluble compounds and measurements of the key components during the mixed aerobic period. This model is then validated against results from an independent experimental period with considerably different operating parameters. In both cases, the model is able to accurately predict the stratification and most of the biological reactions occurring in the sludge blanket and the supernatant during the non-mixed periods. Together with a correct description of the mixed aerobic period, a good prediction of the overall SBR performance can be achieved.
Resumo:
This article proposes a more accurate approach to dopant extraction using combined inverse modeling and forward simulation of scanning capacitance microscopy (SCM) measurements on p-n junctions. The approach takes into account the essential physics of minority carrier response to the SCM probe tip in the presence of lateral electric fields due to a p-n junction. The effects of oxide fixed charge and interface state densities in the grown oxide layer on the p-n junction samples were considered in the proposed method. The extracted metallurgical and electrical junctions were compared to the apparent electrical junction obtained from SCM measurements. (C) 2002 American Institute of Physics.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
A combined procedure for separating Lu, Hf, Sm, Nd, and rare earth elements (REEs) from a single sample digest is presented. The procedure consists of the following five steps: (1) sample dissolution via sodium peroxide sintering; (2) separation of the high field strength elements from the REEs and other matrix elements by a HF-free anion-exchange column procedure; (3) purification of Hf on a cation-exchange resin; (4) separation of REEs from other matrix elements by cation exchange; (5) Lu, Sm, and Nd separation from the other REEs by reversed-phase ion chromatography. Analytical reproducibilities of Sm-Nd and Lu-Hf isotope systematics are demonstrated for standard solutions and international rock reference materials. Results show overall good reproducibilities for Sm-Nd systematics independent of the rock type analyzed. For the Lu-Hf systematics, the reproducibility of the parent/daughter ratio is much better for JB-1 (basalt) than for two analyzed felsic crustal rocks (DR-N and an Archaean granitoid). It is demonstrated that this poorer reproducibility of the Lu/Hf ratio is truly caused by sample heterogeneity; thus, results are geologically reasonable.