938 resultados para Combat Search And Rescue


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems in subject access to information organization systems have been under investigation for a long time. Focusing on item-level information discovery and access, researchers have identified a range of subject access problems, including quality and application of metadata, as well as the complexity of user knowledge required for successful subject exploration. While aggregations of digital collections built in the United States and abroad generate collection-level metadata of various levels of granularity and richness, no research has yet focused on the role of collection-level metadata in user interaction with these aggregations. This dissertation research sought to bridge this gap by answering the question “How does collection-level metadata mediate scholarly subject access to aggregated digital collections?” This goal was achieved using three research methods: • in-depth comparative content analysis of collection-level metadata in three large-scale aggregations of cultural heritage digital collections: Opening History, American Memory, and The European Library • transaction log analysis of user interactions, with Opening History, and • interview and observation data on academic historians interacting with two aggregations: Opening History and American Memory. It was found that subject-based resource discovery is significantly influenced by collection-level metadata richness. The richness includes such components as: 1) describing collection’s subject matter with mutually-complementary values in different metadata fields, and 2) a variety of collection properties/characteristics encoded in the free-text Description field, including types and genres of objects in a digital collection, as well as topical, geographic and temporal coverage are the most consistently represented collection characteristics in free-text Description fields. Analysis of user interactions with aggregations of digital collections yields a number of interesting findings. Item-level user interactions were found to occur more often than collection-level interactions. Collection browse is initiated more often than search, while subject browse (topical and geographic) is used most often. Majority of collection search queries fall within FRBR Group 3 categories: object, concept, and place. Significantly more object, concept, and corporate body searches and less individual person, event and class of persons searches were observed in collection searches than in item searches. While collection search is most often satisfied by Description and/or Subjects collection metadata fields, it would not retrieve a significant proportion of collection records without controlled-vocabulary subject metadata (Temporal Coverage, Geographic Coverage, Subjects, and Objects), and free-text metadata (the Description field). Observation data shows that collection metadata records in Opening History and American Memory aggregations are often viewed. Transaction log data show a high level of engagement with collection metadata records in Opening History, with the total page views for collections more than 4 times greater than item page views. Scholars observed viewing collection records valued descriptive information on provenance, collection size, types of objects, subjects, geographic coverage, and temporal coverage information. They also considered the structured display of collection metadata in Opening History more useful than the alternative approach taken by other aggregations, such as American Memory, which displays only the free-text Description field to the end-user. The results extend the understanding of the value of collection-level subject metadata, particularly free-text metadata, for the scholarly users of aggregations of digital collections. The analysis of the collection metadata created by three large-scale aggregations provides a better understanding of collection-level metadata application patterns and suggests best practices. This dissertation is also the first empirical research contribution to test the FRBR model as a conceptual and analytic framework for studying collection-level subject access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I investigate the effects of information frictions in price setting decisions. I show that firms' output prices and wages are less sensitive to aggregate economic conditions when firms and workers cannot perfectly understand (or know) the aggregate state of the economy. Prices and wages respond with a lag to aggregate innovations because agents learn slowly about those changes, and this delayed adjustment in prices makes output and unemployment more sensitive to aggregate shocks. In the first chapter of this dissertation, I show that workers' noisy information about the state of the economy help us to explain why real wages are sluggish. In the context of a search and matching model, wages do not immediately respond to a positive aggregate shock because workers do not (yet) have enough information to demand higher wages. This increases firms' incentives to post more vacancies, and it makes unemployment volatile and sensitive to aggregate shocks. This mechanism is robust to two major criticisms of existing theories of sluggish wages and volatile unemployment: the flexibility of wages for new hires and the cyclicality of the opportunity cost of employment. Calibrated to U.S. data, the model explains 60% of the overall unemployment volatility. Consistent with empirical evidence, the response of unemployment to TFP shocks predicted by my model is large, hump-shaped, and peaks one year after the TFP shock, while the response of the aggregate wage is weak and delayed, peaking after two years. In the second chapter of this dissertation, I study the role of information frictions and inventories in firms' price setting decisions in the context of a monetary model. In this model, intermediate goods firms accumulate output inventories, observe aggregate variables with one period lag, and observe their nominal input prices and demand at all times. Firms face idiosyncratic shocks and cannot perfectly infer the state of nature. After a contractionary nominal shock, nominal input prices go down, and firms accumulate inventories because they perceive some positive probability that the nominal price decline is due to a good productivity shock. This prevents firms' prices from decreasing and makes current profits, households' income, and aggregate demand go down. According to my model simulations, a 1% decrease in the money growth rate causes output to decline 0.17% in the first quarter and 0.38% in the second followed by a slow recovery to the steady state. Contractionary nominal shocks also have significant effects on total investment, which remains 1% below the steady state for the first 6 quarters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in order to ensure safety and operational efficiency of their railroad networks. Besides maintenance costs, other costs such as train accident costs, train and shipment delay costs and rolling stock maintenance costs are also closely related to track maintenance activities. Optimizing the track maintenance process on the extensive railroad networks is a very complex problem with major cost implications. Currently, the decision making process for track maintenance planning is largely manual and primarily relies on the knowledge and judgment of experts. There is considerable potential to improve the process by using operations research techniques to develop solutions to the optimization problems on track maintenance. In this dissertation study, we propose a range of mathematical models and solution algorithms for three network-level scheduling problems on track maintenance: track inspection scheduling problem (TISP), production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP). TISP involves a set of inspection teams which travel over the railroad network to identify track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to be scheduled subject to many difficult side constraints such as periodicity constraints and discrete working time constraints. A vehicle routing problem formulation was proposed for TISP, and a customized heuristic algorithm was developed to solve the model. The algorithm iteratively applies a constructive heuristic and a local search algorithm in an incremental scheduling horizon framework. The proposed model and algorithm have been adopted by a Class I railroad in its decision making process. Real-world case studies show the proposed approach outperforms the manual approach in short-term scheduling and can be used to conduct long-term what-if analyses to yield managerial insights. PTSP schedules capital track maintenance projects, which are the largest track maintenance activities and account for the majority of railroad capital spending. A time-space network model was proposed to formulate PTSP. More than ten types of side constraints were considered in the model, including very complex constraints such as mutual exclusion constraints and consecution constraints. A multiple neighborhood search algorithm, including a decomposition and restriction search and a block-interchange search, was developed to solve the model. Various performance enhancement techniques, such as data reduction, augmented cost function and subproblem prioritization, were developed to improve the algorithm. The proposed approach has been adopted by a Class I railroad for two years. Our numerical results show the model solutions are able to satisfy all hard constraints and most soft constraints. Compared with the existing manual procedure, the proposed approach is able to bring significant cost savings and operational efficiency improvement. JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering thousands of capital track maintenance jobs (based on the defects identified in track inspection) into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based model and a multiple-step heuristic algorithm were developed to solve this problem. Various side constraints such as mutual exclusion constraints and rounding constraints were considered. The proposed approach has been applied in practice and has shown good performance in both solution quality and efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today's society called information society, grows rapidly and undergoes changes in the sources of information under the Information Technology and Communication ("tics"), in this situation it is necessary to develop tools or reference sources that allow the (to) user (a) the accessibility and use of information. It systematized information on the Meritorious Citizen of the Fatherland and Honor that is Costa Rica, since 1847 to 2008, due to its contribution to culture, science, recreation, among others. The overall objective of this research was to make a work print and digital reference, which will collect each of the biographies and works written by (as) Benefactors (as) of the country and citizens (as) of Honor and to facilitate access to information and strengthen outreach conducted by the Library "Victor Manuel Sanabria Martínez" of the Legislature, through its publications, exhibitions and related activities, to publicize its documentary. The variables used for this investigation were:-sources (primary and secondary), Organization of information - tools in various documentation centers and libraries. This was carried out a questionnaire, which was structured in the Excel program, aimed at (as) directors (as) or officers (as) in different libraries and documentation centers, and visits to selected sites for search and selection information. It is important to spread this final graduation in different public and school libraries in the country, since history and culture rescues national, who gave identity to the Costa Rican people. The systematization made by a thematic CD-ROM, provide accessibility to all (as) the (as) citizens (as) who access the Internet through the website of the Legislative Assembly Library and other state institutions wishing through a hyperlink on your "web", to refer the same.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biobanks represent key resources for clinico-genomic research and are needed to pave the way to personalised medicine. To achieve this goal, it is crucial that scientists can securely access and share high-quality biomaterial and related data. Therefore, there is a growing interest in integrating biobanks into larger biomedical information and communication technology (ICT) infrastructures. The European project p-medicine is currently building an innovative ICT infrastructure to meet this need. This platform provides tools and services for conducting research and clinical trials in personalised medicine. In this paper, we describe one of its main components, the biobank access framework p-BioSPRE (p-medicine Biospecimen Search and Project Request Engine). This generic framework enables and simplifies access to existing biobanks, but also to offer own biomaterial collections to research communities, and to manage biobank specimens and related clinical data over the ObTiMA Trial Biomaterial Manager. p-BioSPRE takes into consideration all relevant ethical and legal standards, e.g., safeguarding donors’ personal rights and enabling biobanks to keep control over the donated material and related data. The framework thus enables secure sharing of biomaterial within open and closed research communities, while flexibly integrating related clinical and omics data. Although the development of the framework is mainly driven by user scenarios from the cancer domain, in this case, acute lymphoblastic leukaemia and Wilms tumour, it can be extended to further disease entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttraumatic stress and PTSD are becoming familiar terms to refer to what we often call the invisible wounds of war, yet these are recent additions to a popular discourse in which images of and ideas about combat-affected veterans have long circulated. A legacy of ideas about combat veterans and war trauma thus intersects with more recent clinical information about PTSD to become part of a discourse of visual media that has defined and continues to redefine veteran for popular audiences. In this dissertation I examine realist combat veteran representations in selected films and other visual media from three periods: during and after World Wars I and II (James Allen from I Am a Fugitive from a Chain Gang, Fred Derry and Al Stephenson from The Best Years of Our Lives); after the Vietnam War (Michael from The Deer Hunter, Eriksson from Casualties of War), and post 9/11 (Will James from The Hurt Locker, a collection of veterans from Wartorn: 1861-2010.) Employing a theoretical framework informed by visual media studies, Barthes’ concept of myth, and Foucault’s concept ofdiscursive unity, I analyze how these veteran representations are endowed with PTSD symptom-like behaviors and responses that seem reasonable and natural within the narrative arc. I contend that veteran myths appear through each veteran representation as the narrative develops and resolves. I argue that these veteran myths are many and varied but that they crystallize in a dominant veteran discourse, a discursive unity that I term veteranness. I further argue that veteranness entangles discrete categories such as veteran, combat veteran, and PTSD with veteran myths, often tying dominant discourse about combat-related PTSD to outdated or outmoded notions that significantly affect our attitudes about and treatment of veterans. A basic premise of my research is that unless and until we learn about the lasting effects of the trauma inherent to combat, we hinder our ability to fulfill our responsibilities to war veterans. A society that limits its understanding of posttraumatic stress, PTSD and post-war experiences of actual veterans affected by war trauma to veteranness or veteran myths risks normalizing or naturalizing an unexamined set of sociocultural expectations of all veterans, rendering them voice-less, invisible, and, ultimately disposable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit geht dem Status quo der unternehmensweiten Suche in österreichischen Großunternehmen nach und beleuchtet Faktoren, die darauf Einfluss haben. Aus der Analyse des Ist-Zustands wird der Bedarf an Enterprise-Search-Software abgeleitet und es werden Rahmenbedingungen für deren erfolgreiche Einführung skizziert. Die Untersuchung stützt sich auf eine im Jahr 2009 durchgeführte Onlinebefragung von 469 österreichischen Großunternehmen (Rücklauf 22 %) und daran anschließende Leitfadeninterviews mit zwölf Teilnehmern der Onlinebefragung. Der theoretische Teil verortet die Arbeit im Kontext des Informations- und Wissensmanagements. Der Fokus liegt auf dem Ansatz der Enterprise Search, ihrer Abgrenzung gegenüber der Suche im Internet und ihrem Leistungsspektrum. Im empirischen Teil wird zunächst aufgezeigt, wie die Unternehmen ihre Informationen organisieren und welche Probleme dabei auftreten. Es folgt eine Analyse des Status quo der Informationssuche im Unternehmen. Abschließend werden Bekanntheit und Einsatz von Enterprise-Search-Software in der Zielgruppe untersucht sowie für die Einführung dieser Software nötige Rahmenbedingungen benannt. Defizite machen die Befragten insbesondere im Hinblick auf die übergreifende Suche im Unternehmen und die Suche nach Kompetenzträgern aus. Hier werden Lücken im Wissensmanagement offenbar. 29 % der Respondenten der Onlinebefragung geben zudem an, dass es in ihren Unternehmen gelegentlich bis häufig zu Fehlentscheidungen infolge defizitärer Informationslagen kommt. Enterprise-Search-Software kommt in 17 % der Unternehmen, die sich an der Onlinebefragung beteiligten, zum Einsatz. Die durch Enterprise-Search-Software bewirkten Veränderungen werden grundsätzlich positiv beurteilt. Alles in allem zeigen die Ergebnisse, dass Enterprise-Search-Strategien nur Erfolg haben können, wenn man sie in umfassende Maßnahmen des Informations- und Wissensmanagements einbettet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física