935 resultados para Collapsed objects and Supernovae
Resumo:
The paper spells out five different accounts of the relationship between objects and relations three of which are versions of ontic structural realism (OSR). We argue that the distinction between objects and properties, including relations, is merely a conceptual one by contrast to an ontological one: properties, including relations, are modes, that is the concrete, particular ways in which objects exist. We then set out moderate OSR as the view according to which irreducible relations are central ways in which the fundamental physical objects exist. Physical structures thus consist in objects for whom it is essential that they are related in certain ways. There hence are objects, but they do not possess an intrinsic identity. This view can also admit intrinsic properties as ways in which objects exist provided that these do not amount to identity conditions for the objects. Finally, we indicate how this view can take objective modality into account.
Resumo:
Devices for venous cannulation have seen significant progress over time: the original, rigid steel cannulas have evolved toward flexible plastic cannulas with wire support that prevents kinking, very thin walled wire wound cannulas allowing for percutaneous application, and all sorts of combinations. In contrast to all these rectilinear venous cannula designs, which present the same cross-sectional area over their entire intravascular path, the smartcanula concept of "collapsed insertion and expansion in situ" is the logical next step for venous access. Automatically adjusting cross-sectional area up to a pre-determined diameter or the vessel lumen provides optimal flow and ease of use for both, insertion and removal. Smartcanula performance was assessed in a small series of patients (76 +/- 17 kg) undergoing redo procedures. The calculated target pump flow (2.4 L/min/m2) was 4.42 +/- 61 L/ min. Mean pump flow achieved during cardiopulmonary bypass was 4.84 +/- 87 L/min or 110% of the target. Reduced atrial chatter, kink resistance in situ, and improved blood drainage despite smaller access orifice size, are the most striking advantages of this new device. The benefits of smart cannulation are obvious in remote cannulation for limited access cardiac surgery, but there are many other cannula applications where space is an issue, and that is where smart cannulation is most effective.
Resumo:
Hierarchical clustering is a popular method for finding structure in multivariate data,resulting in a binary tree constructed on the particular objects of the study, usually samplingunits. The user faces the decision where to cut the binary tree in order to determine the numberof clusters to interpret and there are various ad hoc rules for arriving at a decision. A simplepermutation test is presented that diagnoses whether non-random levels of clustering are presentin the set of objects and, if so, indicates the specific level at which the tree can be cut. The test isvalidated against random matrices to verify the type I error probability and a power study isperformed on data sets with known clusteredness to study the type II error.
Resumo:
In proton magnetic resonance imaging (MRI) metallic substances lead to magnetic field distortions that often result in signal voids in the adjacent anatomic structures. Thus, metallic objects and superparamagnetic iron oxide (SPIO)-labeled cells appear as hypointense artifacts that obscure the underlying anatomy. The ability to illuminate these structures with positive contrast would enhance noninvasive MR tracking of cellular therapeutics. Therefore, an MRI methodology that selectively highlights areas of metallic objects has been developed. Inversion-recovery with ON-resonant water suppression (IRON) employs inversion of the magnetization in conjunction with a spectrally-selective on-resonant saturation prepulse. If imaging is performed after these prepulses, positive signal is obtained from off-resonant protons in close proximity to the metallic objects. The first successful use of IRON to produce positive contrast in areas of metallic spheres and SPIO-labeled stem cells in vitro and in vivo is presented.
Resumo:
Intuitively, we think of perception as providing us with direct cognitive access to physical objects and their properties. But this common sense picture of perception becomes problematic when we notice that perception is not always veridical. In fact, reflection on illusions and hallucinations seems to indicate that perception cannot be what it intuitively appears to be. This clash between intuition and reflection is what generates the puzzle of perception. The task and enterprise of unravelling this puzzle took, and still takes, centre stage in the philosophy of perception. The goal of my dissertation is to make a contribution to this enterprise by formulating and defending a new structural approach to perception and perceptual consciousness. The argument for my structural approach is developed in several steps. Firstly, I develop an empirically inspired causal argument against naïve and direct realist conceptions of perceptual consciousness. Basically, the argument says that perception and hallucination can have the same proximal causes and must thus belong to the same mental kind. I emphasise that this insight gives us good reasons to abandon what we are instinctively driven to believe - namely that perception is directly about the outside physical world. The causal argument essentially highlights that the information that the subject acquires in perceiving a worldly object is always indirect. To put it another way, the argument shows that what we, as perceivers, are immediately aware of, is not an aspect of the world but an aspect of our sensory response to it. A view like this is traditionally known as a Representative Theory of Perception. As a second step, emphasis is put on the task of defending and promoting a new structural version of the Representative Theory of Perception; one that is immune to some major objections that have been standardly levelled at other Representative Theories of Perception. As part of this defence and promotion, I argue that it is only the structural features of perceptual experiences that are fit to represent the empirical world. This line of thought is backed up by a detailed study of the intriguing phenomenon of synaesthesia. More precisely, I concentrate on empirical cases of synaesthetic experiences and argue that some of them provide support for a structural approach to perception. The general picture that emerges in this dissertation is a new perspective on perceptual consciousness that is structural through and through.
Resumo:
Portfolio and stochastic discount factor (SDF) frontiers are usually regarded as dual objects, and researchers sometimes use one to answer questions about the other. However, the introduction of conditioning information and active portfolio strategies alters this relationship. For instance, the unconditional portfolio frontier in Hansen and Richard (1987) is not dual to the unconditional SDF frontier in Gallant, Hansen and Tauchen (1990). We characterise the dual objects to those frontiers, and relate them to the frontiers generated with managed portfolios, which are commonly used in empirical work. We also study the implications of a safe asset and other special cases.
Resumo:
Des dels inicis dels ordinadors com a màquines programables, l’home ha intentat dotar-los de certa intel•ligència per tal de pensar o raonar el més semblant possible als humans. Un d’aquests intents ha sigut fer que la màquina sigui capaç de pensar de tal manera que estudiï jugades i guanyi partides d’escacs. En l’actualitat amb els actuals sistemes multi tasca, orientat a objectes i accés a memòria i gràcies al potent hardware del que disposem, comptem amb una gran varietat de programes que es dediquen a jugar a escacs. Però no hi ha només programes petits, hi ha fins i tot màquines senceres dedicades a calcular i estudiar jugades per tal de guanyar als millors jugadors del món. L’objectiu del meu treball és dur a terme un estudi i implementació d’un d’aquests programes, per això es divideix en dues parts. La part teòrica o de l’estudi, consta d’un estudi dels sistemes d’intel•ligència artificial que es dediquen a jugar a escacs, estudi i cerca d’una funció d’avaluació vàlida i estudi dels algorismes de cerca. La part pràctica del treball es basa en la implementació d’un sistema intel•ligent capaç de jugar a escacs amb certa lògica. Aquesta implementació es porta a terme amb l’ajuda de les llibreries SDL, utilitzant l’algorisme minimax amb poda alfa-beta i codi c++. Com a conclusió del projecte m’agradaria remarcar que l’estudi realitzat m’ha deixat veure que crear un joc d’escacs no era tan fàcil com jo pensava però m’ha aportat la satisfacció d’aplicar tot el que he après durant la carrera i de descobrir moltes altres coses noves.
Resumo:
Résumé La théorie de l'autocatégorisation est une théorie de psychologie sociale qui porte sur la relation entre l'individu et le groupe. Elle explique le comportement de groupe par la conception de soi et des autres en tant que membres de catégories sociales, et par l'attribution aux individus des caractéristiques prototypiques de ces catégories. Il s'agit donc d'une théorie de l'individu qui est censée expliquer des phénomènes collectifs. Les situations dans lesquelles un grand nombre d'individus interagissent de manière non triviale génèrent typiquement des comportements collectifs complexes qui sont difficiles à prévoir sur la base des comportements individuels. La simulation informatique de tels systèmes est un moyen fiable d'explorer de manière systématique la dynamique du comportement collectif en fonction des spécifications individuelles. Dans cette thèse, nous présentons un modèle formel d'une partie de la théorie de l'autocatégorisation appelée principe du métacontraste. À partir de la distribution d'un ensemble d'individus sur une ou plusieurs dimensions comparatives, le modèle génère les catégories et les prototypes associés. Nous montrons que le modèle se comporte de manière cohérente par rapport à la théorie et est capable de répliquer des données expérimentales concernant divers phénomènes de groupe, dont par exemple la polarisation. De plus, il permet de décrire systématiquement les prédictions de la théorie dont il dérive, notamment dans des situations nouvelles. Au niveau collectif, plusieurs dynamiques peuvent être observées, dont la convergence vers le consensus, vers une fragmentation ou vers l'émergence d'attitudes extrêmes. Nous étudions également l'effet du réseau social sur la dynamique et montrons qu'à l'exception de la vitesse de convergence, qui augmente lorsque les distances moyennes du réseau diminuent, les types de convergences dépendent peu du réseau choisi. Nous constatons d'autre part que les individus qui se situent à la frontière des groupes (dans le réseau social ou spatialement) ont une influence déterminante sur l'issue de la dynamique. Le modèle peut par ailleurs être utilisé comme un algorithme de classification automatique. Il identifie des prototypes autour desquels sont construits des groupes. Les prototypes sont positionnés de sorte à accentuer les caractéristiques typiques des groupes, et ne sont pas forcément centraux. Enfin, si l'on considère l'ensemble des pixels d'une image comme des individus dans un espace de couleur tridimensionnel, le modèle fournit un filtre qui permet d'atténuer du bruit, d'aider à la détection d'objets et de simuler des biais de perception comme l'induction chromatique. Abstract Self-categorization theory is a social psychology theory dealing with the relation between the individual and the group. It explains group behaviour through self- and others' conception as members of social categories, and through the attribution of the proto-typical categories' characteristics to the individuals. Hence, it is a theory of the individual that intends to explain collective phenomena. Situations involving a large number of non-trivially interacting individuals typically generate complex collective behaviours, which are difficult to anticipate on the basis of individual behaviour. Computer simulation of such systems is a reliable way of systematically exploring the dynamics of the collective behaviour depending on individual specifications. In this thesis, we present a formal model of a part of self-categorization theory named metacontrast principle. Given the distribution of a set of individuals on one or several comparison dimensions, the model generates categories and their associated prototypes. We show that the model behaves coherently with respect to the theory and is able to replicate experimental data concerning various group phenomena, for example polarization. Moreover, it allows to systematically describe the predictions of the theory from which it is derived, specially in unencountered situations. At the collective level, several dynamics can be observed, among which convergence towards consensus, towards frag-mentation or towards the emergence of extreme attitudes. We also study the effect of the social network on the dynamics and show that, except for the convergence speed which raises as the mean distances on the network decrease, the observed convergence types do not depend much on the chosen network. We further note that individuals located at the border of the groups (whether in the social network or spatially) have a decisive influence on the dynamics' issue. In addition, the model can be used as an automatic classification algorithm. It identifies prototypes around which groups are built. Prototypes are positioned such as to accentuate groups' typical characteristics and are not necessarily central. Finally, if we consider the set of pixels of an image as individuals in a three-dimensional color space, the model provides a filter that allows to lessen noise, to help detecting objects and to simulate perception biases such as chromatic induction.
Resumo:
General clustering deals with weighted objects and fuzzy memberships. We investigate the group- or object-aggregation-invariance properties possessed by the relevant functionals (effective number of groups or objects, centroids, dispersion, mutual object-group information, etc.). The classical squared Euclidean case can be generalized to non-Euclidean distances, as well as to non-linear transformations of the memberships, yielding the c-means clustering algorithm as well as two presumably new procedures, the convex and pairwise convex clustering. Cluster stability and aggregation-invariance of the optimal memberships associated to the various clustering schemes are examined as well.
Resumo:
Web 2.0 services such as social bookmarking allow users to manage and share the links they find interesting, adding their own tags for describingthem. This is especially interesting in the field of open educational resources, asdelicious is a simple way to bridge the institutional point of view (i.e. learningobject repositories) with the individual one (i.e. personal collections), thuspromoting the discovering and sharing of such resources by other users. In this paper we propose a methodology for analyzing such tags in order to discover hidden semantics (i.e. taxonomies and vocabularies) that can be used toimprove descriptions of learning objects and make learning object repositories more visible and discoverable. We propose the use of a simple statistical analysis tool such as principal component analysis to discover which tags createclusters that can be semantically interpreted. We will compare the obtained results with a collection of resources related to open educational resources, in order to better understand the real needs of people searching for open educational resources.
Resumo:
Diplomityössä käsitellään ne toimet, jotka Esa Lehtipaino Oy:ssä tarvitsee tehdä kunnossapidon kehittämiseksi sanomalehtipainoprosessin kunnossapidossa. Työssä käytettiin luotettavuuskeskeisen ja kokonaisvaltaisen tuottavuuskeskeisen kunnossapidon strategioiden osia sekä PSK Standardisoinnin PSK 5705:2006standardin mukaista menetelmää määrittämään kunnossapidon kannalta tärkeimmät kohteet ja osa-alueet. PSK 5705:2006 on kunnonvalvonnan värähtelymittausten mittaustoiminnan suunnitteluun luotu standardi, jonka perusteella rakennettiin sanomalehtipainoprosessiin sopiva tuotantolaitteiston luokitusjärjestelmä. Luokituksenperusteella kohdennetaan kunnossapidon resurssit tuotantojärjestelmän luotettavuuden kannalta oikeisiin, tuottavimpiin kohteisiin. Tuotantohenkilöstön kunnossapitohenkilökunnalle tekemien vikailmoitusten välitykseen rakennettiin Microsoft Access -pohjainen Vikaloki-lomake. Kunnossapitotoiminnan kehityksen tuloksien seuraamiseksi määritettiin PSK 6201:2003 standardin mukainen tuotannon kokonaistehokkuutta kuvaava KNL-luku. KNL-luvusta luotiin ennuste kunnossapidon kehittämistarpeista regressioanalyysin avulla. Kehitysmalli esittää, että kohdeyrityksessä tulee toiminnan kehittäminen aloittaa päivittämällä tietokonepohjainen toiminnanohjausjärjestelmä, johon lisätään ennakoivat suunnitellut kunnossapitotoimet. Toimet määriteltiin yllämainitun kriittisyysluokituksen perusteella.
Resumo:
La théorie de l'autocatégorisation est une théorie de psychologie sociale qui porte sur la relation entre l'individu et le groupe. Elle explique le comportement de groupe par la conception de soi et des autres en tant que membres de catégories sociales, et par l'attribution aux individus des caractéristiques prototypiques de ces catégories. Il s'agit donc d'une théorie de l'individu qui est censée expliquer des phénomènes collectifs. Les situations dans lesquelles un grand nombre d'individus interagissent de manière non triviale génèrent typiquement des comportements collectifs complexes qui sont difficiles à prévoir sur la base des comportements individuels. La simulation informatique de tels systèmes est un moyen fiable d'explorer de manière systématique la dynamique du comportement collectif en fonction des spécifications individuelles. Dans cette thèse, nous présentons un modèle formel d'une partie de la théorie de l'autocatégorisation appelée principe du métacontraste. À partir de la distribution d'un ensemble d'individus sur une ou plusieurs dimensions comparatives, le modèle génère les catégories et les prototypes associés. Nous montrons que le modèle se comporte de manière cohérente par rapport à la théorie et est capable de répliquer des données expérimentales concernant divers phénomènes de groupe, dont par exemple la polarisation. De plus, il permet de décrire systématiquement les prédictions de la théorie dont il dérive, notamment dans des situations nouvelles. Au niveau collectif, plusieurs dynamiques peuvent être observées, dont la convergence vers le consensus, vers une fragmentation ou vers l'émergence d'attitudes extrêmes. Nous étudions également l'effet du réseau social sur la dynamique et montrons qu'à l'exception de la vitesse de convergence, qui augmente lorsque les distances moyennes du réseau diminuent, les types de convergences dépendent peu du réseau choisi. Nous constatons d'autre part que les individus qui se situent à la frontière des groupes (dans le réseau social ou spatialement) ont une influence déterminante sur l'issue de la dynamique. Le modèle peut par ailleurs être utilisé comme un algorithme de classification automatique. Il identifie des prototypes autour desquels sont construits des groupes. Les prototypes sont positionnés de sorte à accentuer les caractéristiques typiques des groupes, et ne sont pas forcément centraux. Enfin, si l'on considère l'ensemble des pixels d'une image comme des individus dans un espace de couleur tridimensionnel, le modèle fournit un filtre qui permet d'atténuer du bruit, d'aider à la détection d'objets et de simuler des biais de perception comme l'induction chromatique. Abstract Self-categorization theory is a social psychology theory dealing with the relation between the individual and the group. It explains group behaviour through self- and others' conception as members of social categories, and through the attribution of the proto-typical categories' characteristics to the individuals. Hence, it is a theory of the individual that intends to explain collective phenomena. Situations involving a large number of non-trivially interacting individuals typically generate complex collective behaviours, which are difficult to anticipate on the basis of individual behaviour. Computer simulation of such systems is a reliable way of systematically exploring the dynamics of the collective behaviour depending on individual specifications. In this thesis, we present a formal model of a part of self-categorization theory named metacontrast principle. Given the distribution of a set of individuals on one or several comparison dimensions, the model generates categories and their associated prototypes. We show that the model behaves coherently with respect to the theory and is able to replicate experimental data concerning various group phenomena, for example polarization. Moreover, it allows to systematically describe the predictions of the theory from which it is derived, specially in unencountered situations. At the collective level, several dynamics can be observed, among which convergence towards consensus, towards frag-mentation or towards the emergence of extreme attitudes. We also study the effect of the social network on the dynamics and show that, except for the convergence speed which raises as the mean distances on the network decrease, the observed convergence types do not depend much on the chosen network. We further note that individuals located at the border of the groups (whether in the social network or spatially) have a decisive influence on the dynamics' issue. In addition, the model can be used as an automatic classification algorithm. It identifies prototypes around which groups are built. Prototypes are positioned such as to accentuate groups' typical characteristics and are not necessarily central. Finally, if we consider the set of pixels of an image as individuals in a three-dimensional color space, the model provides a filter that allows to lessen noise, to help detecting objects and to simulate perception biases such as chromatic induction.
Resumo:
L'objectiu d'aquest article és discutir una antiga matriu comunicativa parcialment assenyalada per A. Comte, Ch. S. Peirce i U. Eco. Aquests autors reconegueren la relació entre marques, fletxes, ensenyes i espills com a diferents metàfores bàsiques de diverses operacions cognitives, encara que no en van presentar una visió de conjunt. Tots tres van treballar la distinció entre metàfora i metonímia, que va resultar tan fructífera en diferents dominis de recerca, com Jakobson (entre altres) ens va ensenyar. La meua hipòtesi és que aquestes quatre metàfores bàsiques (marques, fletxes, ensenyes i espills) es poden deduir correctament d'una matriu que relacioni l'eix metàfora-metonímia amb menes de codi ficació. E. Verón llançà una interessant reflexió sobre els modes analògic i digital, tot partint d'un problema semblant. Marques, etxes, ensenyes i miralls poden recordar bé operacions com senyalar i assenyalar, representar i reflectir, respectivament: estipular de manera aproximada com aquests objectes i aquestes operacions estan connectats podria ser una petita contribució a l'antic programa de Peirce i els altres.
Resumo:
Suomen ilmatilaa valvotaan reaaliaikaisesti, pääasiassa ilmavalvontatutkilla. Ilmatilassa on lentokoneiden lisäksi paljon muitakin kohteita, jotka tutka havaitsee. Tutka lähettää nämä tiedot edelleen ilmavalvontajärjestelmään. Ilmavalvontajärjestelmä käsittelee tiedot, sekä lähettää ne edelleen esitysjärjestelmään. Esitysjärjestelmässä tiedot esitetään synteettisinä merkkeinä, seurantoina joista käytetään nimitystä träkki. Näiden tietojen puitteissa sekä oman ammattitaitonsa perusteella ihmiset tekevät päätöksiä. Tämän työn tarkoituksena on tutkia tutkan havaintoja träkkien initialisointipisteessä siten, että voitaisiin määritellä tyypillinen rakenne sille mikä on oikea ja mikä väärä tai huono träkki. Tämän lisäksi tulisi ennustaa, mitkä Irakeista eivät aiheudu ilma- aluksista. Saadut tulokset voivat helpottaa työtä havaintojen tulkinnassa - jokainen lintuparvi ei ole ehdokas seurannaksi. Havaintojen luokittelu voidaan tehdä joko neurolaskennalla tai päätöspuulla. Neurolaskenta tehdään neuroverkoilla, jotka koostuvat neuroneista. Päätöspuu- luokittelijat ovat oppivia tietorakenteita kuten neuroverkotkin. Yleisin päätöpuu on binääripuu. Tämän työn tavoitteena on opettaa päätöspuuluokittelija havaintojen avulla siten, että se pystyy luokittelemaan väärät havainnot oikeista. Neurolaskennan mahdollisuuksia tässä työssä ei käsitellä kuin teoreettisesti. Työn tuloksena voi todeta, että päätöspuuluokittelijat ovat erittäin kykeneviä erottamaan oikeat havainnot vääristä. Vaikka tulokset olivat rohkaiseva, lisää tutkimusta tarvitaan määrittelemään luotettavammin tekijät, jotka parhaiten suorittavat luokittelun.