986 resultados para Cold storage.
Resumo:
Objectives: To investigate the effect of hot and cold temperatures on ambulance attendances. Design: An ecological time series study. Setting and participants: The study was conducted in Brisbane, Australia. We collected information on 783 935 daily ambulance attendances, along with data of associated meteorological variables and air pollutants, for the period of 2000–2007. Outcome measures: The total number of ambulance attendances was examined, along with those related to cardiovascular, respiratory and other non-traumatic conditions. Generalised additive models were used to assess the relationship between daily mean temperature and the number of ambulance attendances. Results: There were statistically significant relationships between mean temperature and ambulance attendances for all categories. Acute heat effects were found with a 1.17% (95% CI: 0.86%, 1.48%) increase in total attendances for 1 °C increase above threshold (0–1 days lag). Cold effects were delayed and longer lasting with a 1.30% (0.87%, 1.73%) increase in total attendances for a 1 °C decrease below the threshold (2–15 days lag). Harvesting was observed following initial acute periods of heat effects, but not for cold effects. Conclusions: This study shows that both hot and cold temperatures led to increases in ambulance attendances for different medical conditions. Our findings support the notion that ambulance attendance records are a valid and timely source of data for use in the development of local weather/health early warning systems.
Resumo:
Milk proteins are susceptible to chemical changes during processing and storage. We used proteomic tools to analyse bovine αS1-casein in UHT milk. 2-D gels of freshly processed milk αS1-casein was presented as five or more spots due to genetic polymorphism and variable phosphorylation. MS analysis after phosphopeptide enrichment allowed discrimination between phosphorylation states and genetic variants. We identified a new alternatively-spliced isoform with a deletion of exon 17, producing a new C-terminal sequence, K164SQVNSEGLHSYGL177, with a novel phosphorylation site at S174. Storage of UHT milk at elevated temperatures produced additional, more acidic αS1-casein spots on the gels and decreased the resolution of minor forms. MS analysis indicated that non-enzymatic deamidation and loss of the N-terminal dipeptide were the major contributors to the changing spot pattern. These results highlight the important role of storage temperature in the stability of milk proteins and the utility of proteomic techniques for analysis of proteins in food.
Resumo:
Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.
Resumo:
We investigate existing cloud storage schemes and identify limitations in each one based on the security services that they provide. We then propose a new cloud storage architecture that extends CloudProof of Popa et al. to provide availability assurance. This is accomplished by incorporating a proof of storage protocol. As a result, we obtain the first secure storage cloud computing scheme that furnishes all three properties of availability, fairness and freshness.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
Effective, statistically robust sampling and surveillance strategies form an integral component of large agricultural industries such as the grains industry. Intensive in-storage sampling is essential for pest detection, Integrated Pest Management (IPM), to determine grain quality and to satisfy importing nation’s biosecurity concerns, while surveillance over broad geographic regions ensures that biosecurity risks can be excluded, monitored, eradicated or contained within an area. In the grains industry, a number of qualitative and quantitative methodologies for surveillance and in-storage sampling have been considered. Primarily, research has focussed on developing statistical methodologies for in storage sampling strategies concentrating on detection of pest insects within a grain bulk, however, the need for effective and statistically defensible surveillance strategies has also been recognised. Interestingly, although surveillance and in storage sampling have typically been considered independently, many techniques and concepts are common between the two fields of research. This review aims to consider the development of statistically based in storage sampling and surveillance strategies and to identify methods that may be useful for both surveillance and in storage sampling. We discuss the utility of new quantitative and qualitative approaches, such as Bayesian statistics, fault trees and more traditional probabilistic methods and show how these methods may be used in both surveillance and in storage sampling systems.
Resumo:
Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.
Resumo:
Extreme cold and heat waves, characterised by a number of cold or hot days in succession, place a strain on people’s cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987–2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave’s timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the ninety-fifth to ninety-ninth percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for cold or hot temperatures.
Resumo:
The most suitable temperature range for domestic purposes is about 200C to 260C .Besides, both cold and hot water appear to be essential frequently for industrial purposes. In summer bringing down the water temperature at a comfortable range causes significant energy consumption. This project aims at saving energy to control water temperature by making water tank insulated .Therefore applying better insulation system which would reduce the disparity between the desired temperature and the actual temperature and hence saving energy significantly. Following the investigation, this project used cotton jacket to insulate the tank and the tank was placed under a paddy straw shade with a view to attaining the maximum energy saving. Finally, it has been found that reduction in energy consumption is to be about 50-60% which is quite satisfactory. Since comfortable temperature range varies from person to person this project thus combines insulating effect with automatic water heater.
Consecutive days of cold water immersion: effects on cycling performance and heart rate variability.
Resumo:
We investigated performance and heart rate (HR) variability (HRV) over consecutive days of cycling with post-exercise cold water immersion (CWI) or passive recovery (PAS). In a crossover design, 11 cyclists completed two separate 3-day training blocks (120 min cycling per day, 66 maximal sprints, 9 min time trialling [TT]), followed by 2 days of recovery-based training. The cyclists recovered from each training session by standing in cold water (10 °C) or at room temperature (27 °C) for 5 min. Mean power for sprints, total TT work and HR were assessed during each session. Resting vagal-HRV (natural logarithm of square-root of mean squared differences of successive R-R intervals; ln rMSSD) was assessed after exercise, after the recovery intervention, during sleep and upon waking. CWI allowed better maintenance of mean sprint power (between-trial difference [90 % confidence limits] +12.4 % [5.9; 18.9]), cadence (+2.0 % [0.6; 3.5]), and mean HR during exercise (+1.6 % [0.0; 3.2]) compared with PAS. ln rMSSD immediately following CWI was higher (+144 % [92; 211]) compared with PAS. There was no difference between the trials in TT performance (-0.2 % [-3.5; 3.0]) or waking ln rMSSD (-1.2 % [-5.9; 3.4]). CWI helps to maintain sprint performance during consecutive days of training, whereas its effects on vagal-HRV vary over time and depend on prior exercise intensity.
Resumo:
Background: HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. FINDINGS We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4[degree sign]C, --20[degree sign]C and -70[degree sign]C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at -70[degree sign]C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Conclusions Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at -70[degree sign]C for 12 months is most effective in retaining VLP stability.
Resumo:
The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of LCB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of LCB web panels are determined by assuming conservatively that the web panels are simply supported at the junction between their flange and web elements. Hence finite element analyses were conducted to investigate the elastic shear buckling behavior of LCBs. An improved equation for the higher elastic shear buckling coefficient of LCBs was proposed based on finite element analysis results and included in the ultimate shear capacity equations of the North American cold-formed steel codes. Finite element analyses show that relatively short span LCBs without flange restraints are subjected to a new combined shear and flange distortion action due to the unbalanced shear flow. They also show that significant post-buckling strength is available for LCBs subjected to shear. New equations were also proposed in which post-buckling strength of LCBs was included.