933 resultados para Coffee - Drying process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the purpose of evaluating the behavior of different polymers employed as binders in small-diameter pellets for oral administration, we prepared formulations containing paracetamol and one of the following polymers: PVP, PEG 1500, hydroxypropylmethylcellulose and methylcellulose, and we evaluated their different binding properties. The pellets were obtained by the extrusion/spheronization process and were subsequently subjected to fluid bed drying. In order to assess drug delivery, the United States Pharmacopeia (USP) apparatus 3 (Bio-Dis) was employed, in conjunction with the method described by the same pharmacopeia for the dissolution of paracetamol tablets (apparatus 1). The pellets were also evaluated for granulometry, friability, true density and drug content. The results indicate that the different binders used are capable of affecting production in different ways, and some of the physicochemical characteristics of the pellets, as well as the dissolution test, revealed that the formulations acted like immediate-release products. The pellets obtained presented favorable release characteristics for orally disintegrating tablets. USP apparatus 3 seems to be more adequate for discriminating among formulations than the basket method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0  tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of our study is to evaluate the performance of surface sealants and conventional polishing after ageing procedures. Eighty circular composite restorations were performed on extracted human molars. After standardised roughening, the restorations were either sealed with one of three surface sealants (Lasting Touch (LT), BisCover LV (BC), G-Coat Plus (GP) or a dentin adhesive Heliobond (HB)) or were manually polished with silicon polishers (MP) (n = 16). The average roughness (Ra) and colourimetric parameters (CP) (L*a*b*) were evaluated. The specimens underwent an artificial ageing process by thermocycling, staining (coffee) and abrasive (toothbrushing) procedures. After each ageing step, Ra and CP measurements were repeated. A qualitative surface analysis was performed with SEM. The differences between the test groups regarding Ra and CP values were analysed with nonparametric ANOVA analysis (α = 0.05). The lowest Ra values were achieved with HB. BC and GP resulted in Ra values below 0.2 μm (clinically relevant threshold), whereas LT and MP sometimes led to higher Ra values. LT showed a significantly higher discolouration after the first coffee staining, but this was normalised to the other groups after toothbrushing. The differences between the measurements and test groups for Ra and CP were statistically significant. However, the final colour difference showed no statistical difference among the five groups. SEM evaluation showed clear alterations after ageing in all coating groups. Surface sealants and dentin adhesives have the potential to reduce surface roughness but tend to debond over time. Surface sealants can only be recommended for polishing provisional restorations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In coffee processing the fermentation stage is considered one of the critical operations by its impact on the final quality of the product. However, the level of control of the fermentation process on each farm is often not adequate; the use of sensorics for controlling coffee fermentation is not common. The objective of this work is to characterize the fermentation temperature in a fermentation tank by applying spatial interpolation and a new methodology of data analysis based on phase space diagrams of temperature data, collected by means of multi-distributed, low cost and autonomous wireless sensors. A real coffee fermentation was supervised in the Cauca region (Colombia) with a network of 24 semi-passive TurboTag RFID temperature loggers with vacuum plastic cover, submerged directly in the fermenting mass. Temporal evolution and spatial distribution of temperature is described in terms of the phase diagram areas which characterizes the cyclic behaviour of temperature and highlights the significant heterogeneity of thermal conditions at different locations in the tank where the average temperature of the fermentation was 21.2 °C, although there were temperature ranges of 4.6°C, and average spatial standard deviation of ±1.21ºC. In the upper part of the tank we found high heterogeneity of temperatures, the higher temperatures and therefore the higher fermentation rates. While at the bottom, it has been computed an area in the phase diagram practically half of the area occupied by the sensors of the upper tank, therefore this location showed higher temperature homogeneity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente Tesis está orientada al análisis de la supervisión multidistribuida de tres procesos agroalimentarios: el secado solar, el transporte refrigerado y la fermentación de café, a través de la información obtenida de diferentes dispositivos de adquisición de datos, que incorporan sensores, así como el desarrollo de metodologías de análisis de series temporales, modelos y herramientas de control de procesos para la ayuda a la toma de decisiones en las operaciones de estos entornos. En esta tesis se han utilizado: tarjetas RFID (TemTrip®) con sistema de comunicación por radiofrecuencia y sensor de temperatura; el registrador (i-Button®), con sensor integrado de temperatura y humedad relativa y un tercer prototipo empresarial, módulo de comunicación inalámbrico Nlaza, que integra un sensor de temperatura y humedad relativa Sensirion®. Estos dispositivos se han empleado en la conformación de redes multidistribuidas de sensores para la supervisión de: A) Transportes de producto hortofrutícola realizados en condiciones comerciales reales, que son: dos transportes terrestre de producto de IV gama desde Murcia a Madrid; transporte multimodal (barco-barco) de limones desde Montevideo (Uruguay) a Cartagena (España) y transporte multimodal (barco-camión) desde Montevideo (Uruguay) a Verona (Italia). B) dos fermentaciones de café realizadas en Popayán (Colombia) en un beneficiadero. Estas redes han permitido registrar la dinámica espacio-temporal de temperaturas y humedad relativa de los procesos estudiados. En estos procesos de transporte refrigerado y fermentación la aplicación de herramientas de visualización de datos y análisis de conglomerados, han permitido identificar grupos de sensores que presentan patrones análogos de sus series temporales, caracterizando así zonas con dinámicas similares y significativamente diferentes del resto y permitiendo definir redes de sensores de menor densidad cubriendo las diferentes zonas identificadas. Las metodologías de análisis complejo de las series espacio-temporales (modelos psicrométricos, espacio de fases bidimensional e interpolaciones espaciales) permitieron la cuantificación de la variabilidad del proceso supervisado tanto desde el punto de vista dinámico como espacial así como la identificación de eventos. Constituyendo así herramientas adicionales de ayuda a la toma de decisiones en el control de los procesos. Siendo especialmente novedosa la aplicación de la representación bidimensional de los espacios de fases en el estudio de las series espacio-temporales de variables ambientales en aplicaciones agroalimentarias, aproximación que no se había realizado hasta el momento. En esta tesis también se ha querido mostrar el potencial de un sistema de control basado en el conocimiento experto como es el sistema de lógica difusa. Se han desarrollado en primer lugar, los modelos de estimación del contenido en humedad y las reglas semánticas que dirigen el proceso de control, el mejor modelo se ha seleccionado mediante un ensayo de secado realizado sobre bolas de hidrogel como modelo alimentario y finalmente el modelo se ha validado mediante un ensayo en el que se deshidrataban láminas de zanahoria. Los resultados sugirieron que el sistema de control desarrollado, es capaz de hacer frente a dificultades como las variaciones de temperatura día y noche, consiguiendo un producto con buenas características de calidad comparables a las conseguidas sin aplicar ningún control sobre la operación y disminuyendo así el consumo energético en un 98% con respecto al mismo proceso sin control. La instrumentación y las metodologías de análisis de datos implementadas en esta Tesis se han mostrado suficientemente versátiles y transversales para ser aplicadas a diversos procesos agroalimentarios en los que la temperatura y la humedad relativa sean criterios de control en dichos procesos, teniendo una aplicabilidad directa en el sector industrial ABSTRACT This thesis is focused on the analysis of multi-distributed supervision of three agri-food processes: solar drying, refrigerated transport and coffee fermentation, through the information obtained from different data acquisition devices with incorporated sensors, as well as the development of methodologies for analyzing temporary series, models and tools to control processes in order to help in the decision making in the operations within these environments. For this thesis the following has been used: RFID tags (TemTrip®) with a Radiofrequency ID communication system and a temperature sensor; the recorder (i-Button®), with an integrated temperature and relative humidity and a third corporate prototype, a wireless communication module Nlaza, which has an integrated temperature and relative humidity sensor, Sensirion®. These devices have been used in creating three multi-distributed networks of sensors for monitoring: A) Transport of fruits and vegetables made in real commercial conditions, which are: two land trips of IV range products from Murcia to Madrid; multimodal transport (ship - ship) of lemons from Montevideo (Uruguay) to Cartagena (Spain) and multimodal transport (ship - truck) from Montevideo (Uruguay) to Verona (Italy). B) Two coffee fermentations made in Popayan (Colombia) in a coffee processing plant. These networks have allowed recording the time space dynamics of temperatures and relative humidity of the processed under study. Within these refrigerated transport and fermentation processes, the application of data display and cluster analysis tools have allowed identifying sensor groups showing analogical patterns of their temporary series; thus, featuring areas with similar and significantly different dynamics from the others and enabling the definition of lower density sensor networks covering the different identified areas. The complex analysis methodologies of the time space series (psychrometric models, bi-dimensional phase space and spatial interpolation) allowed quantifying the process variability of the supervised process both from the dynamic and spatial points of view; as well as the identification of events. Thus, building additional tools to aid decision-making on process control brought the innovative application of the bi-dimensional representation of phase spaces in the study of time-space series of environmental variables in agri-food applications, an approach that had not been taken before. This thesis also wanted to show the potential of a control system based on specialized knowledge such as the fuzzy logic system. Firstly, moisture content estimation models and semantic rules directing the control process have been developed, the best model has been selected by an drying assay performed on hydrogel beads as food model; and finally the model has been validated through an assay in which carrot sheets were dehydrated. The results suggested that the control system developed is able to cope with difficulties such as changes in temperature daytime and nighttime, getting a product with good quality features comparable to those features achieved without applying any control over the operation and thus decreasing consumption energy by 98% compared to the same uncontrolled process. Instrumentation and data analysis methodologies implemented in this thesis have proved sufficiently versatile and cross-cutting to apply to several agri-food processes in which the temperature and relative humidity are the control criteria in those processes, having a direct effect on the industry sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-dimensional drying of a porous building material is modelled as a nonlinear diffusion process. The most difficult case of strong surface drying when an internal drying front is created is treated in particular. Simple analytical formulae for the drying front and moisture profiles during second stage drying are obtained when the hydraulic diffusivity is known. The analysis demonstrates the origin of the constant drying front speed observed elsewhere experimentally. Application of the formulae is illustrated for an exponential diffusivity and applied to the drying of a fired clay brick.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep-frying, which consists of immersing a wet material in a large volume of hot oil, presents a process easily adaptable to dry rather than cook materials. A suitable material for drying is sewage sludge, which may be dried using recycled cooking oils (RCO) as frying oil. One advantage is that this prepares both materials for convenient disposal by incineration. This study examines fry-drying of municipal sewage sludge using recycled cooking oil. The transport processes occurring during fry-drying were monitored through sample weight, temperature, and image analysis. Due to the thicker and wetter samples than the common fried foods, high residual moisture is observed in the sludge when the boiling front has reached the geometric center of the sample, suggesting that the operation is heat transfer controlled only during the first half of the process followed by the addition of other mechanisms that allow complete drying of the sample. A series of mechanisms comprising four stages (i.e., initial heating accompanied by a surface boiling onset, film vapor regime, transitional nucleate boiling, and bound water removal) is proposed. In order to study the effect of the operating conditions on the fry-drying kinetics, different oil temperatures (from 120 to 180 degrees C), diameter (D = 15 to 25 mm), and initial moisture content of the sample (4.8 and 5.6 kg water(.)kg(-1) total dry solids) were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature relating to the principles and practice of drying of materials, particularly those susceptible to thermal degradation or undesirable loss of volatile components, has been reviewed. Single droplets of heat-sensitive materials were dried whilst suspended in a horizontal wind tunnel from a specially-designed, rotating thermocouple which enabled direct observation of drying behaviour and continuous measurement of droplet temperature as drying progressed. The effects of drying air temperature and initial solids concentration on the potency of various antibiotics, viz. ampicillin, chloramphenicol, oxytetracycline, streptomycin and tetracycline, were assessed using a modified Drug Sensitivity Testing technique. Only ampicillin was heat-sensitive at temperatures above 100°C, e.g. at an air temperature of 115°C its zone diameter was reduced from 100% to 45%. Selected enzymes, viz. dextran sucrase and invertase, were also dried and their residual activities determined by High Performance Liquid Chromatography. The residual activity of dextran sucrase was rapidly reduced at temperatures above 65°C, and the residual activity of invertase reduced rapidly at temperatures above 65°C; but drying with short residence times will retain most of its activity. The performance of various skin-forming encapsulants, viz. rice and wheat starch, dextrin, coffee, skim milk, fructose, gelatine 60 and 150 Bloom, and gum arabic, was evaluated to determine their capabilities for retention of ethanol as a model volatile, under different operating conditions. The effects of initial solids concentration, air velocity and temperature were monitored for each material tested. Ethanol content was analysed by Gas Liquid Chromatography and in some cases dried crusts were removed for examination. Volatiles retention was concluded to depend in all cases upon the rate and nature of the skin formation and selective diffusion phenomena. The results provided further insight into the inter-relationship between temperature, residence time and thermal degradation of heat-sensitive materials. They should also assist in selection of the preferred dryer for such materials, and of the operating parameter to enable maximum retention of the required physico-chemical characteristics in the dried materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was undertaken to: develop a process for the direct solvent extraction of castor oil seeds. A literature survey confirmed the desirability of establishing such a process with emphasis on the decortication, size, reduction, detoxification-deallergenization, and solvent·extraction operations. A novel process was developed for the dehulling of castor seeds which consists of pressurizing the beans and then suddenly releasing the pressure to vaccum. The degree of dehulling varied according to the pressure applied and the size of the beans. Some of the batches were difficult-to-hull, and this phenomenon was investigated using the scanning electron microscope and by thickness and compressive strength measurements. The other variables studied to lesser degrees included residence time, moisture, content, and temperature.The method was successfully extended to cocoa beans, and (with modifications) to peanuts. The possibility of continuous operation was looked into, and a mechanism was suggested to explain the method works. The work on toxins and allergens included an extensive literature survey on the properties of these substances and the methods developed for their deactivation Part of the work involved setting up an assay method for measuring their concentration in the beans and cake, but technical difficulties prevented the completion of this aspect of the project. An appraisal of the existing deactivation methods was made in the course of searching for new ones. A new method of reducing the size of oilseeds was introduced in this research; it involved freezing the beans in cardice and milling them in a coffee grinder, the method was found to be a quick, efficient, and reliable. An application of the freezing technique was successful in dehulling soybeans and de-skinning peanut kernels. The literature on the solvent extraction, of oilseeds, especially castor, was reviewed: The survey covered processes, equipment, solvents, and mechanism of leaching. three solvents were experimentally investigated: cyclohexane, ethanol, and acetone. Extraction with liquid ammonia and liquid butane was not effective under the conditions studied. Based on the results of the research a process has been suggested for the direct solvent extraction of castor seeds, the various sections of the process have analysed, and the factors affecting the economics of the process were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying is a major and challenging step in the pre-treatment of biomass for production of second generation synfuels for transport. The biomass feedstocks are mostly wet and need to be dried from 30 to 60 wt% moisture content to about 10-15 wt%. The present survey aims to define and evaluate a few of the most promising optimised concepts for biomass pre-treatment scheme in the production of second generation synfuels for transport. The most promising commercially available drying processes were reviewed, focusing on the applications, operational factors and emissions of dryers. The most common dryers applied now for biomass in bio-energy plants are direct rotary dryers, but the use of steam drying techniques is increasing. Steam drying systems enable the integration of the dryer to existing energy sources. In addition to integration, emissions and fire or explosion risks have to be considered when selecting a dryer for the plant. In steam drying there will be no gaseous emissions, but the aqueous effluents need often treatment. Concepts for biomass pre-treatment were defined for two different cases including a large-scale wood-based gasification synfuel production and a small-scale pyrolysis process based on wood chips and miscanthus bundles. For the first case a pneumatic conveying steam dryer was suggested. In the second case the flue gas will be used as drying medium in a direct or indirect rotary dryer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bubbling fluidized bed technology is one of the most effective mean for interaction between solid and gas flow, mainly due to its good mixing and high heat and mass transfer rate. It has been widely used at a commercial scale for drying of grains such as in pharmaceutical, fertilizers and food industries. When applied to drying of non-pours moist solid particles, the water is drawn-off driven by the difference in water concentration between the solid phase and the fluidizing gas. In most cases, the fluidizing gas or drying agent is air. Despite of the simplicity of its operation, the design of a bubbling fluidized bed dryer requires an understanding of the combined complexity in hydrodynamics and the mass transfer mechanism. On the other hand, reliable mass transfer coefficient equations are also required to satisfy the growing interest in mathematical modelling and simulation, for accurate prediction of the process kinetics. This chapter presents an overview of the various mechanisms contributing to particulate drying in a bubbling fluidized bed and the mass transfer coefficient corresponding to each mechanism. In addition, a case study on measuring the overall mass transfer coefficient is discussed. These measurements are then used for the validation of mass transfer coefficient correlations and for assessing the various assumptions used in developing these correlations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orally disintegrating tablets (ODTs) which are also referred to as orodispersible and fast disintegrating tablets, are solid oral dosage forms which upon placing on the tongue, disperse/disintegrate rapidly before being swallowed as a suspension or solution. ODTs are therefore easier and more convenient to administer than conventional tablets and are particularly beneficial for paediatric and geriatric patients, who generally have difficulty swallowing their medication. The work presented in this thesis involved the formulation and process development of ODTs, prepared using freeze-drying. Gelatin is one of the principal excipients used in the formulation of freeze-dried ODTs. One of the studies presented in this thesis investigated the potential modification of the properties of this excipient, in order to improve the performance of the tablets. As gelatin is derived from animal sources, a number of ethical issues surround its use as an excipient in pharmaceutical preparations. This was one of the motivations, Methocel™ and Kollicoat® IR were evaluated as binders as alternative materials to gelatin. Polyox™ was also evaluated as a binder together with its potential uses as a viscosity increasing and mucoadhesive agent to increase the retention of tablets in the mouth to encourage pre-gastric absorption of active pharmaceutical ingredients (APIs). The in vitro oral retention of freeze-dried ODT formulations was one property which was assessed in a design of experiments – factorial design study, which was carried out to further understand the role that formulation excipients have on the properties of the tablets. Finally, the novel approach of incorporating polymeric nanoparticles in freeze-dried ODTs was investigated, to study if the release profile of APIs could be modified, which could improve their therapeutic effect. The results from these studies demonstrated that the properties of gelatin-based formulations can be modified by adjusting pH and ionic strength. Adjustment of formulation pH has shown to significantly reduce tablet disintegration time. Evaluating Methocel™, in particular low viscosity grades, and Kollicoat® IR as binders has shown that these polymers can form tablets of satisfactory hardness and disintegration time. Investigating Polyox™ as an excipient in freeze-dried ODT formulations revealed that low viscosity grades appear suitable as binders whilst higher viscosity grades could potentially be utilised as viscosity increasing and mucoadhesive agents. The design of experiments – factorial design study revealed the influence of individual excipients in a formulation mix on resultant tablet properties and in vitro oral retention of APIs. Novel methods have been developed, which allows the incorporation of polymeric nanoparticles in situ in freeze-dried ODT formulations, which allows the modification of the release profile of APIs.