955 resultados para Coastwise navigation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keyboards, mice, and touch screens are a potential source of infection or contamination in operating rooms, intensive care units, and autopsy suites. The authors present a low-cost prototype of a system, which allows for touch-free control of a medical image viewer. This touch-free navigation system consists of a computer system (IMac, OS X 10.6 Apple, USA) with a medical image viewer (OsiriX, OsiriX foundation, Switzerland) and a depth camera (Kinect, Microsoft, USA). They implemented software that translates the data delivered by the camera and a voice recognition software into keyboard and mouse commands, which are then passed to OsiriX. In this feasibility study, the authors introduced 10 medical professionals to the system and asked them to re-create 12 images from a CT data set. They evaluated response times and usability of the system compared with standard mouse/keyboard control. Users felt comfortable with the system after approximately 10 minutes. Response time was 120 ms. Users required 1.4 times more time to re-create an image with gesture control. Users with OsiriX experience were significantly faster using the mouse/keyboard and faster than users without prior experience. They rated the system 3.4 out of 5 for ease of use in comparison to the mouse/keyboard. The touch-free, gesture-controlled system performs favorably and removes a potential vector for infection, protecting both patients and staff. Because the camera can be quickly and easily integrated into existing systems, requires no calibration, and is low cost, the barriers to using this technology are low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surgical treatment of liver tumours relies on precise localization of the lesions and detailed knowledge of the patient-specific vascular and biliary anatomy. Detailed three-dimensional (3D) anatomical information facilitates complete tumour removal while preserving a sufficient amount of functional liver tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to identify the anatomy of pineal region venous complex using neuronavigation software when distorted by the presence of a space-occupying lesion and to describe the anatomical relationship between lesion and veins. Moreover we discuss its influence on the choice of the surgical strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presenting visual feedback for image-guided surgery on a monitor requires the surgeon to perform time-consuming comparisons and diversion of sight and attention away from the patient. Deficiencies in previously developed augmented reality systems for image-guided surgery have, however, prevented the general acceptance of any one technique as a viable alternative to monitor displays. This work presents an evaluation of the feasibility and versatility of a novel augmented reality approach for the visualisation of surgical planning and navigation data. The approach, which utilises a portable image overlay device, was evaluated during integration into existing surgical navigation systems and during application within simulated navigated surgery scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While beneficially decreasing the necessary incision size, arthroscopic hip surgery increases the surgical complexity due to loss of joint visibility. To ease such difficulty, a computer-aided mechanical navigation system was developed to present the location of the surgical tool relative to the patient¿s hip joint. A preliminary study reduced the position error of the tracking linkage with limited static testing trials. In this study, a correction method, including a rotational correction factor and a length correction function, was developed through more in-depth static testing. The developed correction method was then applied to additional static and dynamic testing trials to evaluate its effectiveness. For static testing, the position error decreased from an average of 0.384 inches to 0.153 inches, with an error reduction of 60.5%. Three parameters utilized to quantify error reduction of dynamic testing did not show consistent results. The vertex coordinates achieved 29.4% of error reduction, yet with large variation in the upper vertex. The triangular area error was reduced by 5.37%, however inconsistent among all five dynamic trials. Error of vertex angles increased, indicating a shape torsion using the developed correction method. While the established correction method effectively and consistently reduced position error in static testing, it did not present consistent results in dynamic trials. More dynamic paramters should be explored to quantify error reduction of dynamic testing, and more in-depth dynamic testing methodology should be conducted to further improve the accuracy of the computer-aided nagivation system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total knee arthroplasty performed with navigation results in more accurate component positioning with fewer outliers. It is not known whether image-based or image-free-systems are preferable and if navigation for only one component leads to equal accuracy in leg alignment than navigation of both components. We evaluated the results of total knee arthroplasties performed with femoral navigation. We studied 90 knees in 88 patients who had conventional total knee arthroplasties, image-based total knee arthroplasties, or total knee arthroplasties with image-free navigation. We compared patients' perioperative times, component alignment accuracy, and short-term outcomes. The total surgical time was longer in the image-based total knee arthroplasty group (109 +/- 7 minutes) compared with the image-free (101 +/- 17 minutes) and conventional total knee arthroplasty groups (87 +/- 20 minutes). The mechanical axis of the leg was within 3 degrees of neutral alignment, although the conventional total knee arthroplasty group showed more (10.6 degrees ) variance than the navigated groups (5.8 degrees and 6.4 degrees , respectively). We found a positive correlation between femoral component malalignment and the total mechanical axis in the conventional group. Our results suggest image-based navigation is not necessary, and image-free femoral navigation may be sufficient for accurate component alignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new system for computer-aided corrective surgery of the jaws has been developed and introduced clinically. It combines three-dimensional (3-D) surgical planning with conventional dental occlusion planning. The developed software allows simulating the surgical correction on virtual 3-D models of the facial skeleton generated from computed tomography (CT) scans. Surgery planning and simulation include dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and segment repositioning. By coupling the software with a tracking system and with the help of a special registration procedure, we are able to acquire dental occlusion plans from plaster model mounts. Upon completion of the surgical plan, the setup is used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with the help of a display showing jaw positions and 3-D positioning guides updated in real time during the surgical procedure. The proposed approach offers the advantages of 3-D visualization and tracking technology without sacrificing long-proven cast-based techniques for dental occlusion evaluation. The system has been applied on one patient. Throughout this procedure, we have experienced improved assessment of pathology, increased precision, and augmented control.