861 resultados para Cloud Computing Modelli di Business
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Dissertação de natureza científica realizada para obtenção do grau de Mestre em Engenharia de Redes de Computadores e Multimédia
Resumo:
Relatório de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.
Resumo:
Wireless Body Area Networks (WBANs) have emerged as a promising technology for medical and non-medical applications. WBANs consist of a number of miniaturized, portable, and autonomous sensor nodes that are used for long-term health monitoring of patients. These sensor nodes continuously collect information of patients, which are used for ubiquitous health monitoring. In addition, WBANs may be used for managing catastrophic events and increasing the effectiveness and performance of rescue forces. The huge amount of data collected by WBAN nodes demands scalable, on-demand, powerful, and secure storage and processing infrastructure. Cloud computing is expected to play a significant role in achieving the aforementioned objectives. The cloud computing environment links different devices ranging from miniaturized sensor nodes to high-performance supercomputers for delivering people-centric and context-centric services to the individuals and industries. The possible integration of WBANs with cloud computing (WBAN-cloud) will introduce viable and hybrid platform that must be able to process the huge amount of data collected from multiple WBANs. This WBAN-cloud will enable users (including physicians and nurses) to globally access the processing and storage infrastructure at competitive costs. Because WBANs forward useful and life-critical information to the cloud – which may operate in distributed and hostile environments, novel security mechanisms are required to prevent malicious interactions to the storage infrastructure. Both the cloud providers and the users must take strong security measures to protect the storage infrastructure.
Resumo:
Atualmente, as Tecnologias de Informação (TI) são cada vez mais vitais dentro das organizações. As TI são o motor de suporte do negócio. Para grande parte das organizações, o funcionamento e desenvolvimento das TI têm como base infraestruturas dedicadas (internas ou externas) denominadas por Centro de Dados (CD). Nestas infraestruturas estão concentrados os equipamentos de processamento e armazenamento de dados de uma organização, por isso, são e serão cada vez mais desafiadas relativamente a diversos fatores tais como a escalabilidade, disponibilidade, tolerância à falha, desempenho, recursos disponíveis ou disponibilizados, segurança, eficiência energética e inevitavelmente os custos associados. Com o aparecimento das tecnologias baseadas em computação em nuvem e virtualização, abrese todo um leque de novas formas de endereçar os desafios anteriormente descritos. Perante este novo paradigma, surgem novas oportunidades de consolidação dos CD que podem representar novos desafios para os gestores de CD. Por isso, é no mínimo irrealista para as organizações simplesmente eliminarem os CD ou transforma-los segundo os mais altos padrões de qualidade. As organizações devem otimizar os seus CD, contudo um projeto eficiente desta natureza, com capacidade para suportar as necessidades impostas pelo mercado, necessidades dos negócios e a velocidade da evolução tecnológica, exigem soluções complexas e dispendiosas tanto para a sua implementação como a sua gestão. É neste âmbito que surge o presente trabalho. Com o objetivo de estudar os CD inicia-se um estudo sobre esta temática, onde é detalhado o seu conceito, evolução histórica, a sua topologia, arquitetura e normas existentes que regem os mesmos. Posteriormente o estudo detalha algumas das principais tendências condicionadoras do futuro dos CD. Explorando o conhecimento teórico resultante do estudo anterior, desenvolve-se uma metodologia de avaliação dos CD baseado em critérios de decisão. O estudo culmina com uma análise sobre uma nova solução tecnológica e a avaliação de três possíveis cenários de implementação: a primeira baseada na manutenção do atual CD; a segunda baseada na implementação da nova solução em outro CD em regime de hosting externo; e finalmente a terceira baseada numa implementação em regime de IaaS.
Resumo:
Neste trabalho foi considerada a possibilidade de incorporar serviços remotos, normalmente associados a serviços web e cloud computing, numa solução local que centralizasse os vários serviços num único sistema e permitisse aos seus utilizadores consumir e configurar os mesmos, quer a partir da rede local, quer remotamente a partir da Internet. Desta forma seria possível conciliar o acesso a partir de qualquer local com internet, característico nas clouds, com a simplicidade de concentrar num só sistema vários serviços que são por norma oferecidos por entidades distintas e ainda permitir aos seus utilizadores o controlo e configuração sobre os mesmos. De forma a validar que este conceito é viável, prático e funcional, foram implementadas duas componentes. Um cliente que corre nos dispositivos dos utilizadores e que proporciona a interface para consumir os serviços disponíveis e um servidor que irá conter e prestar esses serviços aos clientes. Estes serviços incluem lista de contactos, mensagens instantâneas, salas de conversação, transferência de ficheiros, chamadas e conferências de voz e vídeo, pastas remotas, pastas sincronizadas, backups, pastas partilhadas, VoD (Video-on Demand) e AoD (Audio-on Demand). Para o desenvolvimento do cliente e do servidor foi utilizada a framework Qt que recorre à linguagem de programação C++ e ao conjunto de bibliotecas que possui, para o desenvolvimento de aplicações multiplataforma. Para as comunicações entre clientes e servidor, foi utilizado o protocolo XMPP (Extensible Messaging and Presence Protocol), pela forma da biblioteca qxmpp e do servidor XMPP ejabberd. Pelo facto de conter um conjunto de centenas de extensões atualmente ativas que auferem funcionalidades como salas de conversação, transferências de ficheiros e até estabelecer sessões multimédia, graças à sua flexibilidade permitiu ainda a criação de extensões personalizada necessárias para algumas funcionalidades que se pretendeu implementar. Foi ainda utilizado no servidor a framework ffmpeg para suportar algumas funcionalidades multimédia. Após a implementação do cliente para Windows e Linux, e de implementar o servidor em Linux foi realizado um conjunto de testes funcionais para perceber se as funcionalidades e seus mecanismos funcionam corretamente. No caso onde a análise da performance e do consumo de recursos era importante, foram realizados testes de performance e testes de carga.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática
Resumo:
Cloud computing has recently become very popular, and several bioinformatics applications exist already in that domain. The aim of this article is to analyse a current cloud system with respect to usability, benchmark its performance and compare its user friendliness with a conventional cluster job submission system. Given the current hype on the theme, user expectations are rather high, but current results show that neither the price/performance ratio nor the usage model is very satisfactory for large-scale embarrassingly parallel applications. However, for small to medium scale applications that require CPU time at certain peak times the cloud is a suitable alternative.
Resumo:
Grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational resources. Grid enables access to the resources but it does not guarantee any quality of service. Moreover, Grid does not provide performance isolation; job of one user can influence the performance of other user’s job. The other problem with Grid is that the users of Grid belong to scientific community and the jobs require specific and customized software environment. Providing the perfect environment to the user is very difficult in Grid for its dispersed and heterogeneous nature. Though, Cloud computing provide full customization and control, but there is no simple procedure available to submit user jobs as in Grid. The Grid computing can provide customized resources and performance to the user using virtualization. A virtual machine can join the Grid as an execution node. The virtual machine can also be submitted as a job with user jobs inside. Where the first method gives quality of service and performance isolation, the second method also provides customization and administration in addition. In this thesis, a solution is proposed to enable virtual machine reuse which will provide performance isolation with customization and administration. The same virtual machine can be used for several jobs. In the proposed solution customized virtual machines join the Grid pool on user request. Proposed solution describes two scenarios to achieve this goal. In first scenario, user submits their customized virtual machine as a job. The virtual machine joins the Grid pool when it is powered on. In the second scenario, user customized virtual machines are preconfigured in the execution system. These virtual machines join the Grid pool on user request. Condor and VMware server is used to deploy and test the scenarios. Condor supports virtual machine jobs. The scenario 1 is deployed using Condor VM universe. The second scenario uses VMware-VIX API for scripting powering on and powering off of the remote virtual machines. The experimental results shows that as scenario 2 does not need to transfer the virtual machine image, the virtual machine image becomes live on pool more faster. In scenario 1, the virtual machine runs as a condor job, so it easy to administrate the virtual machine. The only pitfall in scenario 1 is the network traffic.
Resumo:
Customer Experience Management (CEM) se ha convertido en un factor clave para el éxito de las empresas. CEM gestiona todas las experiencias que un cliente tiene con un proveedor de servicios o productos. Es muy importante saber como se siente un cliente en cada contacto y entonces poder sugerir automáticamente la próxima tarea a realizar, simplificando tareas realizadas por personas. En este proyecto se desarrolla una solución para evaluar experiencias. Primero se crean servicios web que clasifican experiencias en estados emocionales dependiendo del nivel de satisfacción, interés, … Esto es realizado a través de minería de textos. Se procesa y clasifica información no estructurada (documentos de texto) que representan o describen las experiencias. Se utilizan métodos de aprendizaje supervisado. Esta parte es desarrollada con una arquitectura orientada a servicios (SOA) para asegurar el uso de estándares y que los servicios sean accesibles por cualquier aplicación. Estos servicios son desplegados en un servidor de aplicaciones. En la segunda parte se desarrolla dos aplicaciones basadas en casos reales. En esta fase Cloud computing es clave. Se utiliza una plataforma de desarrollo en línea para crear toda la aplicación incluyendo tablas, objetos, lógica de negocio e interfaces de usuario. Finalmente los servicios de clasificación son integrados a la plataforma asegurando que las experiencias son evaluadas y que las tareas de seguimiento son automáticamente creadas.