744 resultados para Cloud Computing, attori, piattaforme, Pattern, Orleans
Resumo:
En la actualidad, el uso del Cloud Computing se está incrementando y existen muchos proveedores que ofrecen servicios que hacen uso de esta tecnología. Uno de ellos es Amazon Web Services, que a través de su servicio Amazon EC2, nos ofrece diferentes tipos de instancias que podemos utilizar según nuestras necesidades. El modelo de negocio de AWS se basa en el pago por uso, es decir, solo realizamos el pago por el tiempo que se utilicen las instancias. En este trabajo se implementa en Amazon EC2, una aplicación cuyo objetivo es extraer de diferentes fuentes de información, los datos de las ventas realizadas por las editoriales y librerías de España. Estos datos son procesados, cargados en una base de datos y con ellos se generan reportes estadísticos, que ayudarán a los clientes a tomar mejores decisiones. Debido a que la aplicación procesa una gran cantidad de datos, se propone el desarrollo y validación de un modelo, que nos permita obtener una ejecución óptima en Amazon EC2. En este modelo se tienen en cuenta el tiempo de ejecución, el coste por uso y una métrica de coste/rendimiento. Adicionalmente, se utilizará la tecnología de contenedores Docker para llevar a cabo un caso específico del despliegue de la aplicación.
Resumo:
This talk, which is based on our newest findings and experiences from research and industrial projects, addresses one of the most relevant challenges for a decade to come: How to integrate the Internet of Things with software, people, and processes, considering modern Cloud Computing and Elasticity principles. Elasticity is seen as one of the main characteristics of Cloud Computing today. Is elasticity simply scalability on steroids? This talk addresses the main principles of elasticity, presents a fresh look at this problem, and examines how to integrate people, software services, and things into one composite system, which can be modeled, programmed, and deployed on a large scale in an elastic way. This novel paradigm has major consequences on how we view, build, design, and deploy ultra-large scale distributed systems.
Resumo:
Part 18: Optimization in Collaborative Networks
Resumo:
Part 12: Collaboration Platforms
Resumo:
The current infrastructure as a service (IaaS) cloud systems, allow users to load their own virtual machines. However, most of these systems do not provide users with an automatic mechanism to load a network topology of virtual machines. In order to specify and implement the network topology, we use software switches and routers as network elements. Before running a group of virtual machines, the user needs to set up the system once to specify a network topology of virtual machines. Then, given the user’s request for running a specific topology, our system loads the appropriate virtual machines (VMs) and also runs separated VMs as software switches and routers. Furthermore, we have developed a manager that handles physical hardware failure situations. This system has been designed in order to allow users to use the system without knowing all the internal technical details.
Resumo:
As network capacity has increased over the past decade, individuals and organisations have found it increasingly appealing to make use of remote services in the form of service-oriented architectures and cloud computing services. Data processed by remote services, however, is no longer under the direct control of the individual or organisation that provided the data, leaving data owners at risk of data theft or misuse. This paper describes a model by which data owners can control the distribution and use of their data throughout a dynamic coalition of service providers using digital rights management technology. Our model allows a data owner to establish the trustworthiness of every member of a coalition employed to process data, and to communicate a machine-enforceable usage policy to every such member.
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
The Large scaled emerging user created information in web 2.0 such as tags, reviews, comments and blogs can be used to profile users’ interests and preferences to make personalized recommendations. To solve the scalability problem of the current user profiling and recommender systems, this paper proposes a parallel user profiling approach and a scalable recommender system. The current advanced cloud computing techniques including Hadoop, MapReduce and Cascading are employed to implement the proposed approaches. The experiments were conducted on Amazon EC2 Elastic MapReduce and S3 with a real world large scaled dataset from Del.icio.us website.
Resumo:
Recent changes in IT organisations have resulted in changes to library IT support. Concurrently, new tools and systems for service delivery, have become available, but these require a move away from the traditional ICT model. Many libraries are investigating new models, including Software as a Service (SaaS), cloud computing and open source software. This paper considers whether the adoption of these tools and environments by libraries has occurred as a result of a lack of suitable ICT solutions and support ICT organisations. It also considers what skills library staff need in order to ensure sustainability, supportability, and ultimately, success.
Resumo:
EMR (Electronic Medical Record) is an emerging technology that is highly-blended between non-IT and IT area. One methodology is to link the non-IT and IT area is to construct databases. Nowadays, it supports before and after-treatment for patients and should satisfy all stakeholders such as practitioners, nurses, researchers, administrators and financial departments and so on. In accordance with the database maintenance, DAS (Data as Service) model is one solution for outsourcing. However, there are some scalability and strategy issues when we need to plan to use DAS model properly. We constructed three kinds of databases such as plan-text, MS built-in encryption which is in-house model and custom AES (Advanced Encryption Standard) - DAS model scaling from 5K to 2560K records. To perform custom AES-DAS better, we also devised Bucket Index using Bloom Filter. The simulation showed the response times arithmetically increased in the beginning but after a certain threshold, exponentially increased in the end. In conclusion, if the database model is close to in-house model, then vendor technology is a good way to perform and get query response times in a consistent manner. If the model is DAS model, it is easy to outsource the database, however, some techniques like Bucket Index enhances its utilization. To get faster query response times, designing database such as consideration of the field type is also important. This study suggests cloud computing would be a next DAS model to satisfy the scalability and the security issues.
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.
Resumo:
Through the rise of cloud computing, on-demand applications, and business networks, services are increasingly being exposed and delivered on the Internet and through mobile communications. So far, services have mainly been described through technical interface descriptions. The description of business details, such as pricing, service-level, or licensing, has been neglected and is therefore hard to automatically process by service consumers. Also, third-party intermediaries, such as brokers, cloud providers, or channel partners, are interested in the business details in order to extend services and their delivery and, thus, further monetize services. In this paper, the constructivist design of the UnifiedServiceDescriptionLanguage (USDL), aimed at describing services across the human-to-automation continuum, is presented. The proposal of USDL follows well-defined requirements which are expressed against a common service discourse and synthesized from currently available servicedescription efforts. USDL's concepts and modules are evaluated for their support of the different requirements and use cases.
Resumo:
Submission to the Australian Government Attorney General’s Department consultation paper on Revising the Scope of the Copyright ‘Safe Harbour Scheme’
Resumo:
This study analyses organisational knowledge integration processes from a multi-level and systemic perspective, with particular reference to the case of Fujitsu. A conceptual framework for knowledge integration is suggested focusing on team-building capability, capturing and utilising individual tacit knowledge, and communication networks for integrating dispersed specialist knowledge required in the development of new products and services. The research highlights that knowledge integration occurring in the innovation process is a result of knowledge exposure, its distribution and embodiment and finally its transfer, which leads to innovation capability and competitive advantage in firm.