940 resultados para Closure
Resumo:
"FHWA-OP-05-012"--P. [4] of cover.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Project Sedan.
Resumo:
"May 15, 1962."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"May 1979."
Resumo:
"B-277460"--P. 1.
Resumo:
Mode of access: Internet.
Resumo:
"This fact sheet has been prepared pursuant to the requirements of Title 35 Illinois Administrative Code (35 IAC) Section 705.143. The fact sheet is intended to be a brief summary of the principal facts and significant factual, legal, methodological, and policy questions considered in preparing a draft Class 3 RCRA permit modification. This permit modification will allow the current permittee, Chevron Environmental Services Company (CESC), to establish an onsite Corrective Action Management Unit (CAMU) to manage remediation wastes generated during site remediation activities performed under the RCRA Corrective Action program and to establish a facility-wide Groundwater Management Zone (GMZ) for the duration of the corrective action work at the closed refinery. Pursuant to 35 IAC 705.143(a), this fact sheet is sent to the applicant, to the information repository and to any other person who requests it."
Resumo:
"September 29, 2005."
Resumo:
"July 1999."
Resumo:
CFD simulations of the 75 mm, hydrocyclone of Hsieh (1988) have been conducted using Fluent TM. The simulations used 3-dimensional body fitted grids. The simulations were two phase simulations where the air core was resolved using the mixture (Manninen et al., 1996) and VOF (Hirt and Nichols, 1981) models. Velocity predictions from large eddy simulations (LES), using the Smagorinsky-Lilly sub grid scale model (Smagorinsky, 1963; Lilly, 1966) and RANS simulations using the differential Reynolds stress turbulence model (Launder et al., 1975) were compared with Hsieh's experimental velocity data. The LES simulations gave very good agreement with Hsieh's data but required very fine grids to predict the velocities correctly in the bottom of the apex. The DRSM/RANS simulations under predicted tangential velocities, and there was little difference between the velocity predictions using the linear (Launder, 1989) and quadratic (Speziale et al., 1991) pressure strain models. Velocity predictions using the DRSM turbulence model and the linear pressure strain model could be improved by adjusting the pressure strain model constants.