924 resultados para Cl- channel
Resumo:
OBJECTIVE: The aim of the study was to search for mutations of SCNN1B and SCNN1G in an Italian family with apparently dominant autosomal transmission of a clinical phenotype consistent with Liddle's syndrome. METHODS: Genetic analysis was performed in the proband, his relatives, and 100 control subjects. To determine the functional role of the mutation identified in the proband, we expressed the mutant or wild-type epithelial sodium channel in Xenopus laevis oocytes. RESULTS: A novel point mutation, causing an expected substitution of a leucine residue for the second proline residue of the conserved PY motif (PPP x Y) of the beta subunit was identified in the proband. The functional expression of the mutant epithelial sodium channel in X. laevis oocytes showed a three-fold increase in the amiloride-sensitive current as compared with that of the wild-type channel. CONCLUSION: This newly identified mutation adds to other missense mutations of the PY motif of the beta subunit of the epithelial sodium channel, thus confirming its crucial role in the regulation of the epithelial sodium channel. To our knowledge, this is the first report of Liddle's syndrome in the Italian population, confirmed by genetic and functional analysis, with the identification of a gain-of-function mutation not previously reported.
Resumo:
Epithelial Na(+) channel (ENaC)/degenerin family members are involved in mechanosensation, blood pressure control, pain sensation, and the expression of fear. Several of these channel types display a form of desensitization that allows the channel to limit Na(+) influx during prolonged stimulation. We used site-directed mutagenesis and chemical modification, functional analysis, and molecular dynamics simulations to investigate the role of the lower palm domain of the acid-sensing ion channel 1, a member of the ENaC/degenerin family. The lower palm domains of this trimeric channel are arranged around a central vestibule, at ∼20 Å above the plasma membrane and are covalently linked to the transmembrane channel parts. We show that the lower palm domains approach one another during desensitization. Residues in the palm co-determine the pH dependence of desensitization, its kinetics, and the stability of the desensitized state. Mutations of palm residues impair desensitization by preventing the closing movement of the palm. Overexpression of desensitization-impaired channel mutants in central neurons allowed--in contrast to overexpression of wild type--a sustained signaling response to rapid pH fluctuations. We identify and describe here the function of an important regulatory domain that most likely has a conserved role in ENaC/degenerin channels.
Resumo:
The annual meeting of the French Ion Channels Society, held on the Mediterranean coast of France, is aimed at gathering the international scientific community working on various aspects of ion channels. In this report of the 19th edition of the meeting, held in September 2008, we summarize selected symposia on aspects of the ion channel field from fundamental to clinical research. The meeting is an opportunity for leading investigators as well as young researchers to present and discuss their recent advances and future challenges in the ion channel field.
Resumo:
study of channel catfish in the Mississippi River to determine differences in year class abundance and causative factors
Resumo:
BACKGROUND: Mutations in SCN4A may lead to myotonia. METHODS: Presentation of a large family with myotonia, including molecular studies and patch clamp experiments using human embryonic kidney 293 cells expressing wild-type and mutated channels. RESULTS: In a large family with historic data on seven generations and a clear phenotype, including myotonia at movement onset, with worsening by cold temperature, pregnancy, mental stress, and especially after rest after intense physical activity, but without weakness, the phenotype was linked with the muscle sodium channel gene (SCN4A) locus, in which a novel p.I141V mutation was found. This modification is located within the first transmembrane segment of domain I of the Na(v)1.4 alpha subunit, a region where no mutation has been reported so far. Patch clamp experiments revealed a mutation-induced hyperpolarizing shift (-12.9 mV) of the voltage dependence of activation, leading to a significant increase (approximately twofold) of the window current amplitude. In addition, the mutation shifted the voltage dependence of slow inactivation by -8.7 mV and accelerated the entry to this state. CONCLUSIONS: We propose that the gain-of-function alteration in activation leads to the observed myotonic phenotype, whereas the enhanced slow inactivation may prevent depolarization-induced paralysis.
Resumo:
We present a set of photometric data concerning two distant clusters of galaxies: Cl 1613+3104 (z=0.415) and Cl 1600+4109 (z=0.540). The photometric survey extends to a field of about 4' x 3'. It was performed in 3 filters: Johnson B, and Thuan-Gunn g and r. The sample includes 679 objects in the field of Cl 1613+3104 and 334 objects in Cl 1600+4109.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
Os mecanismos de tolerância à salinidade são complexos e dependem de mudanças fisiológicas e anatômicas que ocorrem na planta inteira. Este trabalho teve como objetivo avaliar a retenção de íons, o crescimento e a partição de matéria seca em dois genótipos de sorgo forrageiro [Sorghum bicolor (L.) Moench] irrigados com água com crescentes níveis de salinidade. Sementes selecionadas foram germinadas em vasos com 12 kg de Argissolo Vermelho-Amarelo textura arenosa em condições de casa de vegetação. O delineamento foi inteiramente casualizado, em esquema fatorial 2 x 5, composto por dois genótipos (CSF 18, sensível, e CSF 20, tolerante) e cinco concentrações de sais na água de irrigação, correspondentes às condutividades elétricas (CEa) de 0,5 (controle), 2,0, 4,0, 6,0 e 8,0 dS m-1, com quatro repetições. A aplicação dos tratamentos (concentrações de sais) teve início aos cinco dias após a emergência, e a coleta das plantas foi realizada aos 44 dias depois do início dos tratamentos. Foram determinadas a produção e a partição de matéria seca, bem como a distribuição das raízes nos vasos e os teores de íons (Na+, K+ e Cl-) nas diversas partes da planta. A salinidade reduziu a área foliar e a produção de matéria seca da parte aérea e das raízes; a redução no crescimento da parte aérea foi maior no genótipo CSF 18. A salinidade alterou a partição de fotoassimilados de forma similar nos dois genótipos, resultando em aumento na proporção entre fontes e drenos, o que pode contribuir para a aclimatação das plantas ao estresse salino. As plantas de sorgo mostraram eficiente mecanismo de retenção de Na+, prevenindo seu acúmulo nos tecidos foliares. Esse mecanismo, no entanto, provocou diminuição na suculência foliar. Os teores foliares de K+ e a retenção de Na+ nos colmos foram maiores no genótipo CSF 20 (tolerante).
Resumo:
Background Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Methods Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNy)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration. Results Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-¿) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord. Conclusion Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.
Resumo:
Après un historique du concept de coparentage, globalement défini comme le soutien que les parents s'apportent mutuellement dans leurs rôles de parents, une brève revue de la littérature exposera les liens entre le coparentage et d'autres aspects du fonctionnement familial Puis quelques vignettes illustreront la variabilité observée dans les familles. Enfin, l'utilité du concept de coparentage sera discutée, pour la recherche comme pour la clinique.
Resumo:
The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.
Resumo:
BACKGROUND: Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. RESULTS: A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. CONCLUSIONS: The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains.
Resumo:
Arrays of vertically aligned ZnO:Cl/ZnO core-shell nanowires were used to demonstrate that the control of the coaxial doping profile in homojunction nanostructures can improve their surface charge carrier transfer while conserving potentially excellent transport properties. It is experimentally shown that the presence of a ZnO shell enhances the photoelectrochemical properties of ZnO:Cl nanowires up to a factor 5. Likewise, the ZnO shell promotes the visible photoluminescence band in highly conducting ZnO:Cl nanowires. These lines of evidence are associated with the increase of the nanowires" surface depletion layer