508 resultados para Ciona-intestinalis Metamorphosis
Resumo:
A controlled experiment, related with the mating system of Scinax rizibilis (Bokermann, 1964), was conducted to assess if larval variation could be due to size of male or its ability to manage an amplexus. Adult individuals were caught during breeding activity (from February 1993 to January 1994), in a temporary pond in the municipality of Ribeirão Branco. São Paulo State, southeastern Brazil. The duration of the larval period was not different between tadpoles of large and small males, nor was it different between tadpoles coming from natural or artificial pairs. The reproductive status of the male (if it had managed an amplexus) also did not influence the total length nor the mass of the tadpoles close to metamorphosis. However, tadpoles of larger and heavier males were, on average, approximately 5.5% and 11% larger and heavier, respectively, than tadpoles of smaller males. These results indicate that the breeding system of S. rizibilis could potentially have a directional effect on the larval characteristics.
Resumo:
Systemic arterial blood pressure and heart rate (f(H)) were measured in unanesthetized, unrestrained larvae and adults of the paradoxical frog, Pseudis paradoxus from São Paulo State in Brazil. Four developmental groups were used, representing the complete transition from aquatic larvae to primarily air-breathing adults. f(H) (49-66 beats/min) was not significantly affected by development, whereas mean arterial blood pressure was strongly affected, being lowest in the stage 37-39 larvae (10 mmHg), intermediate in the stage 44-45 larvae (18 mmHg), and highest in the juveniles and adults (31 and 30 mmHg, respectively). Blood pressure was not significantly correlated with body mass, which was greatest in the youngest larvae and smallest in the juveniles. In the youngest larvae studied (stages 37-39), lung ventilation was infrequent, causing a slight decrease in arterial blood pressure but no change in heart rate. Lung ventilation was more frequent in stages 44-45 larvae and nearly continuous in juveniles and adults floating at the surface. Bradycardia during both forced and voluntary diving was observed in almost every advanced larva, juvenile, and adult but in only one of four young larvae. Developmentally related changes in blood pressure were not complete until metamorphosis, whereas diving bradycardia was present at an earlier stage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The prevalence of intestinal parasitosis was investigated in a primary school located in Rubiao Junior, a peri-urban district of Botucatu, Sao Paulo state, Brazil, in order to assess the effect of treatment and practical measures of prophylaxis in the control of parasitic infections among 7-to-18-year-old school children of a low socio-economic status. The first series of parasitological examinations included 219 school children, of which 123 (56.1%) were found to be infected with one or more parasite species. Eighty-four children carrying pathogenic parasites were submitted to various anti-parasitic treatment schedules. We re-evaluated 75 (89%) students after 4 to 6 months postchemotherapy. The results indicate that the combination of treatment with prophylactic measures has been successful in the control of parasitic infections, since reinfection rates were generally low (≤5.3%), except for Giardia lamblia infections (18.6%), and a marked reduction on the prevalence rates was observed with a significant percentage of cure (≤73.1%) in children infected with most parasite species. The reasons for the apparent failure in the control of infections caused by Hymenolepsis nana and Strongyloides stercoralis are discussed.
Resumo:
Larvae of an estuarine grapsid crab Chasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32 ‰) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18°C, while all larvae reared at 12°C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of both D and T). The temperature-dependence of the instantaneous developmental rate (D-1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasing T (comparing ranges 12-18, 15-21, 18-24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18°C and their dry weight (W) and respiratory response to changes in T were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO2) increased exponentially with increasing T. At each temperature, R increased significantly during growth and development through successive larval stages. No significantly different QO2 values were found in the first three zoeal stages, while a significant decrease with increasing W occurred in the Zoea IV and Megalopa. As in the temperature-dependence of D, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7-2.2) at low temperatures (12-18 °C), but maximum (2.2-3.0) at 18-24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10 = 2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered by C. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration towards shallow coastal lagoons.
Resumo:
Differences in culture duration, metamorphosis rate and the productivity in hatchery culture of M. rosenbergii using a closed system with natural and artificial brackish water were evaluated. Reuse of brackish water in more than one hatchery cycle was also evaluated. Natural and artificial brackish water constituted the two tested treatments, which were distributed in four independent recirculating systems (tank and respective biofilter). Four batches of cultures were conducted and the 2nd and 4th reused the water from the 1st and 3rd, respectively. Mean duration of the hatchery period was 28 d in natural brackish water and 31 d in artificial brackish water. The metamorphosis rate and the average productivity for the natural brackish water treatment were 74% and 60 postlarvae/ L. respectively, and values obtained with artificial brackish water were 55% and 44 postlarvae/L. The successful hatchery culture of M. rosenbergii in this specific artificial brackish water suggests its potential use in enterprises located far from the coast. Brackish water can be used in two consecutive cultures without a negative effect on productivity.
Resumo:
Toward the end of the larval phase (pre-pupa), the reproductive systems of Melipona quadrifasciata and Frieseomelitta varia workers are anatomically similar. Scanning electron microscopy showed that during this developmental phase the right and left ovaries are fused and form a heart-shaped structure located above the midgut. Each ovary is connected to the genital chamber by a long and slender lateral oviduct. During pupal development, the lateral oviducts of workers from both species become extremely reduced due to a drastic process of cell death, as shown by transmission electron microscopy. During the lateral oviduct shortening, their simple columnar epithelial cells show some signs of apoptosis in addition to necrosis. Cell death was characterized by cytoplasmic vesiculation, peculiar accumulation of glycogen, and dilation of cytoplasmic organelles such as mitochondria and rough endoplasmic reticulum. The nuclei, at first irregularly contoured, became swollen, with chromatin flocculation and various areas of condensed chromatin next to the nuclear envelope. At the end of the pupal phase, deep recesses marked the nuclei. At emergence, worker and queen reproductive systems showed marked differences, although reduction in the lateral oviducts was an event occurring in both castes. However, in queens the ovarioles increased in length and the spermatheca was larger than that of workers. At the external anatomical level, the reproductive system of workers and queens could be distinguished in the white- and pink-eyed pupal phase. The metamorphic function of the death of lateral oviduct cells, with consequent oviduct shortening, is discussed in terms of the anatomical reorganization of the reproductive system and of the ventrolateral positioning of adult worker bee ovaries. (C) 2000 Wiley-Liss, Inc.
Resumo:
The location and morphological features of the blood cells found in the pupal ovary of workers and queens of Apis mellifera are described in relationship with their probable function in the ovary differentiation. The hemocytes from inside the ovarioles are different in both castes. In queens their morphology suggest an action in the tunica propria production, while in workers it suggest a phagocytic activity. The hemocytes present in the intersticial tissue are phagocytes in both castes, and may be responsible by the ovary shapping during metamorphosis.
Resumo:
The objective this work is to define an effective method for following the development of immatures of Apis mellifera from metamorphosis to the emergence of the adult, under conditions allowing the application of diverse treatments. The results showed the best method to be when broods with 5th instar larvae and prepupae were maintained in incubators with the temperature and humidity controlled at 34°C and 65 to 70% respectively.
Resumo:
We report nuclear acid phosphatase activity in the somatic (intra-ovariolar and stromatic) and germ cells of differentiating honey bee worker ovaries, as well as in the midgut cells of metamorphosing bees. There was heterogeneity in the intensity and distribution of electron dense deposits of lead phosphate, indicative of acid phosphatase activity in the nuclei of these tissues, during different phases of post-embryonic bee development. This heterogeneity was interpreted as a variation of the nuclear functional state, related to the cell functions in these tissues.
Resumo:
The effect of nitrate concentration on giant river prawn, Macrobrachium rosenbergii, larvae was investigated. Survival rate, weight gain, and larval development were evaluated for different concentrations of nitrate in three experiments. The experiments were divided i n to two phases. In the first phase, larvae from stages I through VIII were analysed, while in the second phase larvae from stage VIII through post-larvae metamorphosis were analysed. Oxygen consumption was also determined for zoea I, II, and VIII exposed to 0, 700, and 1,000 mg/L of nitrate-N. No effect was observed for concentrations up to 180 mg/L NO3-N (experiments I and II), and nitrate levels as 1,000 mg/L NO3-N did not affect survival in the first phase of the third experiment. On the other hand, larval stage index (LSI) and weight gain decreased as nitrate-N concentration increased from 0 to 1,000 mg/L. In the second phase, survival and metamorphosis rate decreased as nitrate concentration increased, according to a linear model. The effect of nitrate levels on weight gain followed a curvilinear pattern. Larval respiration decreased in the water where nitrate was added, but only during stage II. The results demonstrated that nitrate presents extremely low toxicity for giant river prawn larvae, and data were related to the levels of nitrate that usually occur in larviculture systems also discussed. Therefore, nitrate is not a limiting factor for giant river prawn larviculture. © 2003 by The Haworth Press, Inc. All rights reserved.
Resumo:
The South American pepper frog, Leptodactylus labyrinthicus, is a large species that lays eggs in foam nests in holes dug out of the banks of different bodies of water. Recently, it was reported that only 6-10% of eggs are fertilized in foam nests of L. labyrinthicus and the remaining unfertilized eggs are consumed by the tadpoles inside the nest. Here we tested experimentally the influence of the ingestion of trophic eggs on the survivorship and growth of L. labyrinthicus tadpoles. Tadpoles fed on trophic eggs and subsequently fed on dry fish food grew larger than those fed only on dry fish food, and this suggests that the ingestion of trophic eggs is an adaptation to improve tadpole growth. The ingestion of trophic eggs also seems to be important for the maintenance of tadpoles in environments with unpredictable rainfall, as they were able to survive for about 70 days feeding only on these trophic eggs and one tadpole managed to complete metamorphosis feeding on trophic eggs only. Details of the spawning behaviour observed in the field, occurrence of multiple mating, and predation on eggs by terrestrial invertebrates and vertebrates are also reported.
Resumo:
Programmed cell death (PCD) in insect metamorphosis assumes a great diversity of morphology and controlling processes that are still not well understood. With the objective of obtaining information about the PCD process, salivary glands of Drosophila arizonae and D. mulleri were studied during larval-pupal development. From the results, it can be concluded that the type of the PCD that occurs in these organs is morphologically typical of apoptosis (formation of apoptotic nuclei, followed by fragmentation into apoptotic bodies). Histolysis happens in both species, between 22 and 23 h after pupation. There were no significant differences between the species studied. Apoptosis does not occur simultaneously in all cells. Cytoplasmic acid phosphatase activity gradually increases during development, suggesting the existence of acid phosphatases that are only expressed during the apoptotic stage. Twenty hours after pupation, salivary glands already show biochemical alterations relative to nuclear permeability such as acidification, possibly due to the fusion of lysosomes with the nucleus a few hours before apoptosis. Autophagy seems to act together with apoptosis and has a secondary role in cell death. ©FUNPEC-RP.
Resumo:
Ecosystem engineers are organisms that change the physical structure of environments and provide habitats for other organisms. Lepidopteran caterpillars may act as ecosystem engineers by rolling leaves as shelters to complete metamorphosis. After being abandoned, these structures may provide shelter for other organisms. In this study, the influence of leaf-rolling caterpillars on tropical mite communities was reported. Expanded leaves and leaves rolled by larvae and also developed field experiments using leaves rolled manually with different shapes and sizes (i.e. different architectures) in different seasons were surveyed (dry and rainy). While the abundance and diversity of predatory mites were higher in rolled leaves, the abundance of phytophages decreased in these leaves. Species composition differed between rolled and expanded leaves. The structure of shelters affected the distribution of predatory mites, with higher abundances found on funnel-shaped leaves. Predatory mites only benefited from the rolled leaves in the dry season. This is the first study showing (i) the contrasting effects of ecosystem engineers on microarthropod communities, favouring some feeding guilds and inhibiting others; (ii) that the shape of rolled leaves has variable effects on mite communities; and (iii) that facilitation was temporally dependent, i.e. occurred only in the dry season. © 2013 The Royal Entomological Society.
Resumo:
Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations. © 2013 Fonseca et al.