919 resultados para Chemistry, Physical.
Resumo:
Fluorescence quenching of meso-tetrakis-4-sulfonatophenyl (TPPS4) and meso-tetrakis-4-N-methylpyridil (TMPyP) porphyrins is studied in aqueous solution and upon addition of micelles of sodium dodecylsulfate (SDS), cetyltrimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and t-octylphenoxypolyethoxyethanol (Triton X-100). Potassium iodide (KI) was used as quencher. Steady-state Stern-Volmer plots were best fitted by a quadratic equation, including dynamic (K-D) and static (K-s) quenching. Ks was significantly smaller than K-D. Frequency-domain fluorescence lifetimes allowed estimating bimolecular quenching constants, k(q). At 25 degrees C, in aqueous solution, TMPyP shows k(q), values a factor of 2-3 higher than the diffusional limit. TPPS4 shows collisional quenching with pH dependent k(q) values. For TMPyP quenching results are consistent with reported binding constants: a significant reduction of quenching takes place for SDS, a moderate reduction is observed for H PS and almost no change is seen for Triton X-100. Similar data were obtained at 50 C. For CTAC-TPPS4 system an enhancement of quenching was observed as compared to pure buffer. This is probably associated to accumulation of iodide at the cationic micellar interface. The attraction between CTAC headgroups and 1(-), and repulsion between SDS and 1(-), enhances and reduces the fluorescence quenching, respectively, of porphyrins located at the micellar interface. The small quenching of TPPS4 in Triton X-100 is consistent with strong binding as reported in the literature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis, an improved refined crystal and molecular structure re-determination, and the thermal decomposition behavior of two Zn(II) derivatives of isocinchomeronic acid (2,5-pyridinedicarboxylic acid or H(2)2,5-pydc) are presented. [Zn(2,5-pydc)(H(2)O)(3)Zn(2,5-pydc)(H(2)O)(2)](2) (1) crystallizes in the triclinic P-1 space group with a = 7.106(2), b = 11.450(2), c = 11.869(1) angstrom, alpha = 107.29(1), beta = 104.08(1), gamma = 90.32(2)degrees, and Z = 2. [Zn(2,5-pydc)(H(2)O)(2)] center dot H(2)O (2) is orthorhombic (P2(1)2(1)2(1) space group), with a = 7.342(1), b = 9.430(1), c = 13.834(2) angstrom, and Z = 4. The structures were refined to agreement R(1)-factors of 0.0315 (1) and 0.0336 (2). Complex (1) is arranged as molecular Zn(4)(2,5-pydc)(4)(H(2)O)(10) tetramers, the cages of which define channels that remain unblocked by anions. Compound (2) is polymeric with Zn(2,5-pydc)(H(2)O)(2) and Zn(2,5-pydc)(H(2)O)(3) units linked through bridging ligands. Both compounds were synthesized under mild conditions in aqueous media, without need to resort to hydrothermal media. Changing the pH from 4.51 to 5.75 suffices to direct the chemical processes toward the orthorhombic compound rather than to the triclinic one.
Resumo:
A rationalization of the known difference between the (3,4)J(C4H1) and (3,4)J(C1H4) couplings transmitted mainly through the 7-bridge in norbornanone is presented in terms of the effects of hyperconjugative interactions involving the carbonyl group. Theoretical and experimental studies Of (3,4)J(CH) couplings were carried out in 3-endo- and 3-exo-X-2-norbornanone derivatives (X = Cl, Br) and in exo- and endo-2-noborneol compounds. Hyperconjugative interactions were studied with the natural bond orbital (NBO) method. Hyperconjugative interactions involving the carbonyl pi*c(2) =o and sigma*c(2) =o antibonding orbitals produce a decrease of three-bond contribution to both (3,4) J(C4H1) and (3,4)J(C1H4) couplings. However, the latter antibonding orbital also undergoes a strong sigma c(3)-c(4) ->sigma*c(2) =o interaction, which defines an additional coupling pathway for (3,4)J(C4H1) but not for (3,4)J(C1H4). This pathway is similar to that known for homoallylic couplings, the only difference being the nature of the intermediate antibonding orbital; i.e. for (3,4)J(C4H1) it is of sigma*-type, while in homoallylic couplings it is of pi*-type. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Composite solid electrolytes were prepared by thoroughly mixing ZrO2:8 mol% MgO (Z8Mg) and ZrO(2):3 mol% Y(2)O(3) (Z3Y) ceramic powders followed by pressing and sintering at 1500 degrees C/1 h. The properties of the sintered pellets were studied by X-ray diffraction for evaluation of the structural phases by the Rietveld method, by high-temperature dilatometry for analysis of the thermal shrinkage/expansion behavior, and by impedance spectroscopy for determination of the oxide ion conductivity. The x(Z8Mg)+(1-x)(Z3Y) specimens, x= 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, are partially stabilized (monoclinic, cubic and tetragonal phases) with density >94% of the theoretical density and show thermal shock resistance and electrical conductivity values suitable for high-temperature oxygen gas detection. One-end closed tube samples of the composite solid electrolytes were assembled in Pt/Z8Mg+Z3Y/Cr+Cr(2)O(3)/Pt electrochemical cells for exposure to different levels of oxygen in the 1-850 ppm range. The total electrical conductivity increases for increasing the relative Z3Y content. Addition of Z3Y to Z8Mg (80 wt.%-20 wt.%) suppresses the electronic contribution to the electrical conductivity at 620 degrees C. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The fragmentation mechanisms of singlet oxygen [O(2) ((1)Delta(g))]-derived oxidation products of tryptophan (W) were analyzed using collision-induced dissociation coupled with (18)O-isotopic labeling experiments and accurate mass measurements. The five identified oxidized products, namely two isomeric alcohols (trans and cis WOH), two isomeric hydroperoxides (trans and cis WOOH), and N-formylkynurenine (FMK), were shown to share some common fragment ions and losses of small neutral molecules. Conversely, each oxidation product has its own fragmentation mechanism and intermediates, which were confirmed by (18)O-labeling studies. Isomeric WOH lost mainly H(2)O + CO, while WOOH showed preferential elimination of C(2)H(5)NO(3) by two distinct mechanisms. Differences in the spatial arrangement of the two isomeric WOHs led to differences in the intensities of the fragment ions. The same behavior was also found for trans and cis WOOH. FMK was shown to dissociate by a diverse range of mechanisms, with the loss of ammonia the most favored route. MS/MS analyses, (18)O-labeling, and H(2)(18)O experiments demonstrated the ability of FMK to exchange its oxygen atoms with water. Moreover, this approach also revealed that the carbonyl group has more pronounced oxygen exchange ability compared with the formyl group. The understanding of fragmentation mechanisms involved in O(2) ((1)Delta(g))-mediated oxidation of W provides a useful step toward the structural characterization of oxidized peptides and proteins. (J Am Soc Mass Spectrom 2009, 20, 188-197) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry
Resumo:
The interaction between giant bacteriophage DNA and cationic biomimetic particles was characterized from sizing by dynamic light-scattering, zeta-potential analysis, turbidimetry, determination of colloid stability, visualization from atomic force microscopy (AFM), and determination of cytotoxicity against E. coli from colony forming unities counting. First, polystyrene sulfate (PSS) particles with different sizes were covered by a dioctadecyldimethylammonium bromide (DODAB) bilayer yielding the so-called cationic biomimetic particles (PSS/DODAB). These cationic particles are highly organized, present a narrow size distribution and were obtained over a range of particle sizes. Thereafter, upon adding lambda, T5 or T2-DNA to PSS/DODAB particles, supramolecular assemblies PSS/DODAB/DNA were obtained and characterized over a range of DNA concentrations and particle sizes (80-700 nm). Over the low DNA concentration range, PSS/DODAB/DNA assemblies were cationic, colloidally stable with moderate polydispersity and highly cytotoxic against E. coli. From DNA concentration corresponding to charge neutralization, neutral or anionic supramolecular assemblies PSS/DODAB/DNA exhibited low colloid stability, high polydispersity and moderate cytotoxicity. Some nucleosome mimetic assemblies were observed by AFM at charge neutralization (zeta-potential equal to zero).
Resumo:
The development of anticancer therapeutics that target Cdc25 phosphatases is now an active area of research. A complete understanding of the Cdc25 catalytic mechanism would certainly allow a more rational inhibitor design. However, the identity of the catalytic acid used by Cdc25 has been debated and not established unambiguously. Results of molecular dynamics simulations with a calibrated hybrid potential for the first reaction step catalyzed by Cdc25B in complex with its natural substrate, the Cdk2-pTpY/CycA protein complex, are presented here. The calculated reaction free-energy profiles are in very good agreement with experimental measurements and are used to discern between different proposals for the general acid. In addition, the simulations give useful insight on interactions that can be explored for the design of inhibitors specific to Cdc25.
Resumo:
The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized drug preserved its optical properties and the capacity to generate singlet oxygen, which was detected by a direct method from its characteristic phosphorescence decay curve at near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen when a suspension of Pp IX-loaded particles in acetonitrile was excited at 532 nm was determined as 52 mu s, which is in good agreement with the value determined for methylene blue in acetonitrile solution under the same conditions. The Pp IX-loaded silica particles have an efficiency of singlet oxygen generation (eta Delta) higher than the quantum yield of free porphyrins. This high efficiency of singlet oxygen generation was attributed to changes on the monomer-dimer equilibrium after photosentisizer immobilization.
Resumo:
Transplantation of pancreatic islets is efficient in improving the metabolic control and quality of life and in preventing severe hypoglycemia in patients with brittle type I diabetes mellitus. More accurate methods to assess islet viability would be extremely useful in designing target interventions for islet cytoprorection and in reducing the number of islets required to achieve insulin independence. Here we report on an application of calorimetry to evaluate the metabolic response of pancreatic islets to glucose stimulation. A significant increase in metabolic heat was produced by islet samples when consecutively subjected to 2.8 and 16.3 mmol L-1 glucose. Under these glucose concentrations, 1000 islets released average heat values of 9.16 +/- 0.71 mJ and 14.90 +/- 1.21 mJ over 50 min, respectively. Additionally, the glucose stimulation indexes were 1.67 +/- 0.30 for insulin. 1.72 +/- 0.13 for heat and 2.91 +/- 0.50 for lactate, raising the important possibility of substituting the secreted insulin index/ratio by the index/ratio of the heat released in the evaluation of Langerhans islets viability for transplantation. Altogether, Our results demonstrate the applicability of calorimetry to assess the quality of isolated pancreatic islets and to study vital islet functions. (c) 2008 Published by Elsevier B.V.
Resumo:
Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.
Resumo:
This work describes the covalent grafting of 3,4,9,10-perylenediimides (PDI), which are fluorescent dyes with very interesting optical properties, onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. The mesoporous materials were first treated with 3-aminopropyltriethoxysilane (APTES) in anhydrous toluene, generating amine-containing surfaces. The amine-containing materials were then reacted with 3,4,9,10-perylenetetracarboxylic dianhydride (PTCA), generating surface-grafted PDI. Infrared spectra of the materials showed that the reaction with amino groups took place at both anhydride ends of the PTCA molecule, resulting in surface attached diimides. No sign of unreacted anhydride groups were found. The new materials, designated as MCMN2PDI and SBAN(2)PDI, presented absorption and emission spectra corresponding to weakly coupled PDI chromophores, in contrast to the strongly coupled rings usually found in solid PDI samples. The materials showed a red fluorescence, which could be observed by the naked eye under UV irradiation or with a fluorescence microscope. The PDI-modified mesoporous materials showed electrical conductivity when pressed into a pellet. The results presented here show that the new materials are potentially useful in the design of nanowires. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Photochemical and photophysical properties of 1-(2-quinolyl)-2-naphthol (2QN) in water and organic solvents, as well in glassy media were studied to investigate the occurrence of intramolecular excited state prototropic reactions between the naphthol and quinoline rings. Spectral data show the two chromophores apparently behaving independently. However, in acid aqueous media or in low polarity solvents a new electronic transition red shifted band with respect to that of the parent compounds assigned to an intramolecular H-bond and to a quinoid form, respectively, shows up. Model calculations and R-X data lend support to a minimum energy conformer having a dihedral angle of similar to 39 degrees between the two groups. Singlet excited state properties (S-1) show a high suppressive effect of one ring over the other, resulting in very low emission yields at room temperature. The occurrence of excited state intramolecular proton transfer is observed in water (zwitter ion form) and in low polarity media (quinoid form) and originates from a previously CT H-bonded state. Phosphorescence data allowed a reasonable description of the electronic states of 2QN. In addition two new derivatives were prepared having the N atom blocked by methylation and both the N and O groups blocked by a CH2 bridge. The spectral data of these two compounds confirmed the attributions made for 2QN. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have examined the effect of the uncharged species of lidocaine (LDC) and etidocaine (EDC) on the acyl chain moiety of egg phosphatidylcholine liposomes. Changes in membrane organization caused by both anesthetics were detected through the use of EPR spin labels (5, 7 and 12 doxyl stearic acid methyl ester) or fluorescence probes (4, 6, 10, 16 pyrene-fatty acids). The disturbance caused by the LA was greater when the probes were inserted in more external positions of the acyl chain and decreased towards the hydrophobic core of the membrane. The results indicate a preferential insertion of LDC at the polar interface of the bilayer and in the first half of the acyl chain, for EDC. Additionally, 2 H NMR spectra of multilamellar liposomes composed by acyl chain-perdeutero DMPC and EPC (1:4 mol%) allowed the determination of the segmental order (S-mol) and dynamics (T-1) of the acyl chain region. In accordance to the fluorescence and EPR results, changes in molecular orientation and dynamics are more prominent if the LA preferential location is more superficial, as for LDC while EDC seems to organize the acyl chain region between carbons 2-8, which is indicative of its positioning. We propose that the preferential location of LDC and EDC inside the bilayers creates a ""transient site"", which is related to the anesthetic potency since it could modulate the access of these molecules to their binding site(s) in the voltage-gated sodium channel. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The surface activity of salts added to water is Air orders of magnitude lower than that of surfactants. Sodium trifluoromethanesulfonate (NaTf) produced a change in surface tension. with concentration, Delta gamma/Delta c, of -13.2 mN.L/m.mol. This value is ca. 4-fold larger than those of simple salts and that of methanesulfonate. This unexpected surface effect suggested that positively charged micelles containing Tf could exhibit interesting properties. Dodecyltrimethylammonium triflate (DTATf) had a higher Kraft temperature (37 degrees C) and a lower cmc (5 x 10(-3)M) and degree of dissociation (0.11) than the chloride and bromide salts of DTA. Above the Kraft temperature, at a characteristic temperature t(1), the addition of NaTf above 0.05 M. to a DTATf solution induced phase separation. By increasing the temperature of the two-phase system to above t(1), a homogeneous, transparent solution was obtained at a characteristic temperature t(2). These results, together with well-known triflate properties, led us to suggest that the Tf ion pairs With DTA and that the -CF(3) group may be dehydrated in the interfacial region, resulting in new and interesting self-aggregated structures.
Resumo:
Three different cerium citrate-based precursors were used for synthesizing CeO(2) through thermal treatment. Three morphological types of CeO(2) were obtained. Characterization of these oxides was carried out by XRD patterns, SEM microscopy, N(2) adsorption isotherms, Raman spectroscopy, zeta potential, and UV/Vis luminescence. Ozonation of phenol catalyzed by CeO(2) was studied as a representative reaction of environmental interest. The differences on the catalytic activity showed by these three oxides could be correlated to amounts of Ce(3+) on CeO(2) surface and, consequently, to the demand for oxygen needed to burn each precursor.