892 resultados para Characterizing Network Traffic
Resumo:
We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.
Resumo:
Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic.
Resumo:
The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
QUESTIONS UNDER STUDY: Patient characteristics and risk factors for death of Swiss trauma patients in the Trauma Audit and Research Network (TARN). METHODS: Descriptive analysis of trauma patients (≥16 years) admitted to a level I trauma centre in Switzerland (September 1, 2009 to August 31, 2010) and entered into TARN. Multivariable logistic regression analysis was used to identify predictors of 30-day mortality. RESULTS: Of 458 patients 71% were male. The median age was 50.5 years (inter-quartile range [IQR] 32.2-67.7), median Injury Severity Score (ISS) was 14 (IQR 9-20) and median Glasgow Coma Score (GCS) was 15 (IQR 14-15). The ISS was >15 for 47%, and 14% had an ISS >25. A total of 17 patients (3.7%) died within 30 days of trauma. All deaths were in patients with ISS >15. Most injuries were due to falls <2 m (35%) or road traffic accidents (29%). Injuries to the head (39%) were followed by injuries to the lower limbs (33%), spine (28%) and chest (27%). The time of admission peaked between 12:00 and 22:00, with a second peak between 00:00 and 02:00. A total of 64% of patients were admitted directly to our trauma centre. The median time to CT was 30 min (IQR 18-54 min). Using multivariable regression analysis, the predictors of mortality were older age, higher ISS and lower GCS. CONCLUSIONS: Characteristics of Swiss trauma patients derived from TARN were described for the first time, providing a detailed overview of the institutional trauma population. Based on these results, patient management and hospital resources (e.g. triage of patients, time to CT, staffing during night shifts) could be evaluated as a further step.
Resumo:
Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^
Resumo:
The selection of metrics for ecosystem restoration programs is critical for improving the quality of monitoring programs and characterizing project success. Moreover it is oftentimes very difficult to balance the importance of multiple ecological, social, and economical metrics. Metric selection process is a complex and must simultaneously take into account monitoring data, environmental models, socio-economic considerations, and stakeholder interests. We propose multicriteria decision analysis (MCDA) methods, broadly defined, for the selection of optimal sets of metrics to enhance evaluation of ecosystem restoration alternatives. Two MCDA methods, a multiattribute utility analysis (MAUT), and a probabilistic multicriteria acceptability analysis (ProMAA), are applied and compared for a hypothetical case study of a river restoration involving multiple stakeholders. Overall, the MCDA results in a systematic, unbiased, and transparent solution, informing restoration alternatives evaluation. The two methods provide comparable results in terms of selected metrics. However, because ProMAA can consider probability distributions for weights and utility values of metrics for each criteria, it is suggested as the best option if data uncertainty is high. Despite the increase in complexity in the metric selection process, MCDA improves upon the current ad-hoc decision practice based on the consultations with stakeholders and experts, and encourages transparent and quantitative aggregation of data and judgement, increasing the transparency of decision making in restoration projects. We believe that MCDA can enhance the overall sustainability of ecosystem by enhancing both ecological and societal needs.
Resumo:
The debate on network neutrality has reached sufficient notoriety to eliminate the need for detailed explanation. A simple definition will suffice: “network neutrality” is understood as the principle by which the owners of broadband networks would not be allowed to establish any type of discrimination or preference over the traffic transmitted through them
Resumo:
The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters.
Resumo:
IP multicast allows the efficient support of group communication services by reducing the number of IP flows needed for such communication. The increasing generalization in the use of multicast has also triggered the need for supporting IP multicast in mobile environments. Proxy Mobile IPv6 (PMIPv6) is a network-based mobility management solution, where the functionality to support the terminal movement resides in the network. Recently, a baseline solution has been adopted for multicast support in PMIPv6. Such base solution has inefficiencies in multicast routing because it may require multiple copies of a single stream to be received by the same access gateway. Nevertheless, there is an alternative solution to support multicast in PMIPv6 that avoids this issue. This paper evaluates by simulation the scalability of both solutions under realistic conditions, and provides an analysis of the sensitivity of the two proposals against a number of parameters.
Resumo:
Transport is responsible for 41% of CO2 emissions in Spain, and around 65% of that figure is due to road traffic. Tolled motorways are currently managed according to economic criteria: minimizing operational costs and maximizing revenues from tolls. Within this framework, this paper develops a new methodology for managing motorways based on a target of maximum energy efficiency. It includes technological and demand-driven policies, which are applied to two case studies. Various conclusions emerge from this study. One is, that the use of intelligent payment systems is recommended; and another, is that the most sustainable policy would involve defining the most efficient strategy for each motorway section, including the maximum use of its capacity, the toll level which attracts the most vehicles, and the optimum speed limit for each type of vehicle.
Resumo:
As it is defined in ATM 2000+ Strategy (Eurocontrol 2001), the mission of the Air Traffic Management (ATM) System is: “For all the phases of a flight, the ATM system should facilitate a safe, efficient, and expedite traffic flow, through the provision of adaptable ATM services that can be dimensioned in relation to the requirements of all the users and areas of the European air space. The ATM services should comply with the demand, be compatible, operate under uniform principles, respect the environment and satisfy the national security requirements.” The objective of this paper is to present a methodology designed to evaluate the status of the ATM system in terms of the relationship between the offered capacity and traffic demand, identifying weakness areas and proposing solutions. The first part of the methodology relates to the characterization and evaluation of the current system, while a second part proposes an approach to analyze the possible development limit. As part of the work, general criteria are established to define the framework in which the analysis and diagnostic methodology presented is placed. They are: the use of Air Traffic Control (ATC) sectors as analysis unit, the presence of network effects, the tactical focus, the relative character of the analysis, objectivity and a high level assessment that allows assumptions on the human and Communications, Navigation and Surveillance (CNS) elements, considered as the typical high density air traffic resources. The steps followed by the methodology start with the definition of indicators and metrics, like the nominal criticality or the nominal efficiency of a sector; scenario characterization where the necessary data is collected; network effects analysis to study the relations among the constitutive elements of the ATC system; diagnostic by means of the “System Status Diagram”; analytical study of the ATC system development limit; and finally, formulation of conclusions and proposal for improvement. This methodology was employed by Aena (Spanish Airports Manager and Air Navigation Service Provider) and INECO (Spanish Transport Engineering Company) in the analysis of the Spanish ATM System in the frame of the Spanish airspace capacity sustainability program, although it could be applied elsewhere.
Resumo:
Ponencia invitada sobre gestion de trafico aereo en el curso de verano de la UPM Research in Decision Support Systems for future Air Traffic Management
Resumo:
Las redes son la esencia de comunidades y sociedades humanas; constituyen el entramado en el que nos relacionamos y determinan cómo lo hacemos, cómo se disemina la información o incluso cómo las cosas se llevan a cabo. Pero el protagonismo de las redes va más allá del que adquiere en las redes sociales. Se encuentran en el seno de múltiples estructuras que conocemos, desde las interaciones entre las proteínas dentro de una célula hasta la interconexión de los routers de internet. Las redes sociales están presentes en internet desde sus principios, en el correo electrónico por tomar un ejemplo. Dentro de cada cliente de correo se manejan listas contactos que agregadas constituyen una red social. Sin embargo, ha sido con la aparición de los sitios web de redes sociales cuando este tipo de aplicaciones web han llegado a la conciencia general. Las redes sociales se han situado entre los sitios más populares y con más tráfico de la web. Páginas como Facebook o Twitter manejan cifras asombrosas en cuanto a número de usuarios activos, de tráfico o de tiempo invertido en el sitio. Pero las funcionalidades de red social no están restringidas a las redes sociales orientadas a contactos, aquellas enfocadas a construir tu lista de contactos e interactuar con ellos. Existen otros ejemplos de sitios que aprovechan las redes sociales para aumentar la actividad de los usuarios y su involucración alrededor de algún tipo de contenido. Estos ejemplos van desde una de las redes sociales más antiguas, Flickr, orientada al intercambio de fotografías, hasta Github, la red social de código libre más popular hoy en día. No es una casualidad que la popularidad de estos sitios web venga de la mano de sus funcionalidades de red social. El escenario es más rico aún, ya que los sitios de redes sociales interaccionan entre ellos, compartiendo y exportando listas de contactos, servicios de autenticación y proporcionando un valioso canal para publicitar la actividad de los usuarios en otros sitios web. Esta funcionalidad es reciente y aún les queda un paso hasta que las redes sociales superen su condición de bunkers y lleguen a un estado de verdadera interoperabilidad entre ellas, tal como funcionan hoy en día el correo electrónico o la mensajería instantánea. Este trabajo muestra una tecnología que permite construir sitios web con características de red social distribuída. En primer lugar, se presenta una tecnología para la construcción de un componente intermedio que permite proporcionar cualquier característica de gestión de contenidos al popular marco de desarrollo web modelo-vista-controlador (MVC) Ruby on Rails. Esta técnica constituye una herramienta para desarrolladores que les permita abstraerse de las complejidades de la gestión de contenidos y enfocarse en las particularidades de los propios contenidos. Esta técnica se usará también para proporcionar las características de red social. Se describe una nueva métrica de reusabilidad de código para demostrar la validez del componente intermedio en marcos MVC. En segundo lugar, se analizan las características de los sitios web de redes sociales más populares, con el objetivo de encontrar los patrones comunes que aparecen en ellos. Este análisis servirá como base para definir los requisitos que debe cumplir un marco para construir redes sociales. A continuación se propone una arquitectura de referencia que proporcione este tipo de características. Dicha arquitectura ha sido implementada en un componente, Social Stream, y probada en varias redes sociales, tanto orientadas a contactos como a contenido, en el contexto de una asociación vecinal tanto como en proyectos de investigación financiados por la UE. Ha sido la base de varios proyectos fin de carrera. Además, ha sido publicado como código libre, obteniendo una comunidad creciente y está siendo usado más allá del ámbito de este trabajo. Dicha arquitectura ha permitido la definición de un nuevo modelo de control de acceso social que supera varias limitaciones presentes en los modelos de control de acceso para redes sociales. Más aún, se han analizado casos de estudio de sitios de red social distribuídos, reuniendo un conjunto de caraterísticas que debe cumplir un marco para construir redes sociales distribuídas. Por último, se ha extendido la arquitectura del marco para dar cabida a las características de redes sociales distribuídas. Su implementación ha sido validada en proyectos de investigación financiados por la UE. Abstract Networks are the substance of human communities and societies; they constitute the structural framework on which we relate to each other and determine the way we do it, the way information is diseminated or even the way people get things done. But network prominence goes beyond the importance it acquires in social networks. Networks are found within numerous known structures, from protein interactions inside a cell to router connections on the internet. Social networks are present on the internet since its beginnings, in emails for example. Inside every email client, there are contact lists that added together constitute a social network. However, it has been with the emergence of social network sites (SNS) when these kinds of web applications have reached general awareness. SNS are now among the most popular sites in the web and with the higher traffic. Sites such as Facebook and Twitter hold astonishing figures of active users, traffic and time invested into the sites. Nevertheless, SNS functionalities are not restricted to contact-oriented social networks, those that are focused on building your own list of contacts and interacting with them. There are other examples of sites that leverage social networking to foster user activity and engagement around other types of content. Examples go from early SNS such as Flickr, the photography related networking site, to Github, the most popular social network repository nowadays. It is not an accident that the popularity of these websites comes hand-in-hand with their social network capabilities The scenario is even richer, due to the fact that SNS interact with each other, sharing and exporting contact lists and authentication as well as providing a valuable channel to publize user activity in other sites. These interactions are very recent and they are still finding their way to the point where SNS overcome their condition of data silos to a stage of full interoperability between sites, in the same way email and instant messaging networks work today. This work introduces a technology that allows to rapidly build any kind of distributed social network website. It first introduces a new technique to create middleware that can provide any kind of content management feature to a popular model-view-controller (MVC) web development framework, Ruby on Rails. It provides developers with tools that allow them to abstract from the complexities related with content management and focus on the development of specific content. This same technique is also used to provide the framework with social network features. Additionally, it describes a new metric of code reuse to assert the validity of the kind of middleware that is emerging in MVC frameworks. Secondly, the characteristics of top popular SNS are analysed in order to find the common patterns shown in them. This analysis is the ground for defining the requirements of a framework for building social network websites. Next, a reference architecture for supporting the features found in the analysis is proposed. This architecture has been implemented in a software component, called Social Stream, and tested in several social networks, both contact- and content-oriented, in local neighbourhood associations and EU-founded research projects. It has also been the ground for several Master’s theses. It has been released as a free and open source software that has obtained a growing community and that is now being used beyond the scope of this work. The social architecture has enabled the definition of a new social-based access control model that overcomes some of the limitations currenly present in access control models for social networks. Furthermore, paradigms and case studies in distributed SNS have been analysed, gathering a set of features for distributed social networking. Finally the architecture of the framework has been extended to support distributed SNS capabilities. Its implementation has also been validated in EU-founded research projects.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.