965 resultados para Characterization Of Activated Carbon
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glycogen synthases catalyze the transfer of a glucosyl moiety from a nucleotide phosphosugar to a nascent glycogen chain via an alpha1-->4 linkage. Although many genes coding for glycogen synthases have been described, the enzymes from rabbit and yeast are the best characterized. The fungus Neurospora crassa accumulates glycogen during exponential growth, and mobilizes it at the onset of stationary phase, or when placed at high temperature or starved for carbon. Through a PCR methodology, the gsn cDNA coding for the N. crassa glycogen synthase was isolated, and the amino acid sequence of the protein was deduced. The product of the cDNA seems to be the only glycogen synthase present in N. crassa. Characterization of the gsn cDNA revealed that it codes for a 706-amino acids protein, which is very similar to mammalian and yeast glycogen synthases. Gene expression increased during exponential growth, reaching its maximal level at the end of the exponential growth phase, which is consistent with the pattern of glycogen synthase activity and glycogen level. Expression of the gsn is highly regulated at the transcriptional level. Under culture conditions that induce heat shock, conidiation, and carbon starvation, expression of the gsn gene was decreased, and glycogen synthase activity and glycogen content behaved similarly.
Resumo:
In this study we describe the electrochemical behavior of 5,10,15,20-tetrakis(2'-aminophenylporphyrin)manganese(III) chloride supported on a glassy carbon electrode, as well as the electrochemical preparation and characterization of thin films based on pyrrole-3-carboxylic acid. The electrocatalytic action of the electrode modified with the Mn(III) porphyrin toward an azo dye was tested, and the characteristic strong interaction between the incorporated metalloporphyrin and RR120 dye was verified. Copyright (c) 2006 Society of Porphyrins & Phthalocyanines.
Resumo:
An improved on-site characterization of humic-rich hydrocolloids and their metal species in aquatic environments was the goal of the present approach. Both ligand exchange with extreme chelators ( diethylenetetraaminepentaacetic acid ( DTPA), ethylendiaminetetraacetic acid ( EDTA)) and metal exchange with strongly competitive cations (Cu(II)) were used on-site to characterize the conditional stability and availability of colloidal metal species in a humic-rich German bogwater lake ( Venner Moor, Munsterland). A mobile time-controlled tangential-flow ultrafiltration technique (cut-off: 1 kDa) was applied to differentiate operationally between colloidal metal species and free metal ions, respectively. DOC ( dissolved organic carbon) and metal determinations were carried out off-site using a home-built carbon analyzer and conventional ICP-OES ( inductively-coupled plasma-optical emission spectrometry), respectively. From the metal exchange equilibria obtained on-site the kinetic and thermodynamic stability of the original metal species ( Fe, Mn, Zn) could be characterized. Conditional exchange constants K ex obtained from aquatic metal species and competitive Cu(II) ions follow the order Mn > Zn >> Fe. Obviously, Mn and Zn bound to humic-rich hydrocolloids are very strongly competed by Cu( II) ions, in contrast to Fe which is scarcely exchangeable. The exchange of aquatic metal species (e.g. Fe) by DTPA/EDTA exhibited relatively slow kinetics but rather high metal availabilities, in contrast to their Cu(II) exchange.
Electrical characterization of SnO2 : Sb ultrathin films obtained by controlled thickness deposition
Resumo:
A representative study is reported on the electrical properties of SnO2: Sb. ultrathin films (thickness of 40-70 nm) produced by a deposition method based on aqueous colloidal suspensions of 3-5 nm crystalline oxides. The results revealed the films' electrical behavior in a range of 10-300 K, showing a strong dependence on dopant incorporation, with minimum resistivity values in 10 mol % of Sb content. All the samples displayed semiconductor behavior, but the transport mechanism showed a strong dependence on thickness, making it difficult to fit it to well-known models. In thicker films, the mechanism proved to be an intermediary system, with thermally activated and hopping features. Electron hopping was estimated in the range of 0.4-1.9 nm, i.e., in the same order as the particle size. (c) 2007 American Institute of Physics.
Resumo:
The complexes (NH4)(2)[ MoO2( C2H2O3)(2)]center dot H2O, (NH4)(2)[MoO2(C8H6O3)(2)] and (NH4)(2) [MoO3(C4H4O6)]center dot H2O were prepared by reaction of MoO3 with glycolic, mandelic and tartaric acids, respectively. The complexes were characterized by elemental and thermal analysis, IR spectroscopy and X- ray diffraction. Crystals of the glycolate and tartarate complexes are orthorhombic and the mandelate complex is monoclinic. Elemental and thermal analysis data showed that the glycolate and tartarate complexes are monohydrated. Hydration water is not present in the structure of the mandelate complex. IR spectra showed COO- is involved in coordination as well as the oxygen atom of the deprotonated hydroxyl group of the alpha-carbon. The glycolate molybdenum complexes with general formula M-2[MoO2(C2H2O3)(2)]center dot nH(2)O, where M is an alkali metal and n=1 or 1/2, were also prepared and characterized. Aqueous solutions of the glycolate complex become blue and mandelate and tartarate complexes change to yellow or brown when exposed to UV- radiation.
Resumo:
Structural, electrochemical and spectroscopic data of a new dinuclear copper(II) complex with (+/-)-2-(p- methoxyphenoxy) propionic acid are reported. The complex {tetra-mu-[(+/-)-2-(p-methoxyphenoxy)propionato-O,O']-bis( aqua) dicopper(II)} crystallizes in the monoclinic system, space group P2(1)/n with a = 14.149(1) angstrom, b = 7.495(1) angstrom, c = 19.827(1) angstrom, beta = 90.62(1) and Z = 4. X-ray diffraction data show that the two copper(II) ions are held together through four carboxylate bridges, coordinated as equatorial ligands in square pyramidal geometry. The coordination sphere around each copper ion is completed by two water molecules as axial ligands. Thermogravimetric data are consistent with such results. The ligand has an L' type shape due to the angle formed by the beta-carbon of the propionic chain and the linked p-methoxyphenoxy group. This conformation contributes to the occurrence of a peculiar structure of the complex. The complex retains its dinuclear nature when dissolved in acetonitrile, but it decomposes into the corresponding mononuclear species if dissolved in ethanol, according to the EPR measurements. Further, cyclic voltammograms of the complex in acetonitrile show that the dinuclear species maintains the same structure, in agreement with the EPR data in this solvent. The voltammogram shows two irreversible reduction waves at E-pc = -0.73 and -1.04 V vs. Ag/AgCl assigned to the Cu(II)/ Cu(I) and Cu(I)/Cu degrees redox couples, respectively, and two successive oxidation waves at E-pa = -0.01 and +1.41 V vs. Ag/AgCl, assigned to the Cu degrees/Cu(I) and Cu( I)/Cu( II) redox couples, respectively, in addition to the oxidation waves of the carboxylate ligand.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)