832 resultados para Centralized and Distributed Multi-Agent Routing Schemas
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
Many important problems in communication networks, transportation networks, and logistics networks are solved by the minimization of cost functions. In general, these can be complex optimization problems involving many variables. However, physicists noted that in a network, a node variable (such as the amount of resources of the nodes) is connected to a set of link variables (such as the flow connecting the node), and similarly each link variable is connected to a number of (usually two) node variables. This enables one to break the problem into local components, often arriving at distributive algorithms to solve the problems. Compared with centralized algorithms, distributed algorithms have the advantages of lower computational complexity, and lower communication overhead. Since they have a faster response to local changes of the environment, they are especially useful for networks with evolving conditions. This review will cover message-passing algorithms in applications such as resource allocation, transportation networks, facility location, traffic routing, and stability of power grids.
Resumo:
Distributed argumentation technology is a computational approach incorporating argumentation reasoning mechanisms within multi-agent systems. For the formal foundations of distributed argumentation technology, in this thesis we conduct a principle-based analysis of structured argumentation as well as abstract multi-agent and abstract bipolar argumentation. The results of the principle-based approach of these theories provide an overview and guideline for further applications of the theories. Moreover, in this thesis we explore distributed argumentation technology using distributed ledgers. We envision an Intelligent Human-input-based Blockchain Oracle (IHiBO), an artificial intelligence tool for storing argumentation reasoning. We propose a decentralized and secure architecture for conducting decision-making, addressing key concerns of trust, transparency, and immutability. We model fund management with agent argumentation in IHiBO and analyze its compliance with European fund management legal frameworks. We illustrate how bipolar argumentation balances pros and cons in legal reasoning in a legal divorce case, and how the strength of arguments in natural language can be represented in structured arguments. Finally, we discuss how distributed argumentation technology can be used to advance risk management, regulatory compliance of distributed ledgers for financial securities, and dialogue techniques.
Resumo:
This paper presents the multi-threading and internet message communication capabilities of Qu-Prolog. Message addresses are symbolic and the communications package provides high-level support that completely hides details of IP addresses and port numbers as well as the underlying TCP/IP transport layer. The combination of the multi-threads and the high level inter-thread message communications provide simple, powerful support for implementing internet distributed intelligent applications.
Resumo:
In this paper we describe a distributed object oriented logic programming language in which an object is a collection of threads deductively accessing and updating a shared logic program. The key features of the language, such as static and dynamic object methods and multiple inheritance, are illustrated through a series of small examples. We show how we can implement object servers, allowing remote spawning of objects, which we can use as staging posts for mobile agents. We give as an example an information gathering mobile agent that can be queried about the information it has so far gathered whilst it is gathering new information. Finally we define a class of co-operative reasoning agents that can do resource bounded inference for full first order predicate logic, handling multiple queries and information updates concurrently. We believe that the combination of the concurrent OO and the LP programming paradigms produces a powerful tool for quickly implementing rational multi-agent applications on the internet.
Resumo:
A energia eléctrica é um bem essencial para a maioria das sociedades. O seu fornecimento tem sido encarado como um serviço público, da responsabilidade dos governos, através de empresas monopolistas, públicas e privadas. O Mercado Ibérico de Electricidade (MIBEL) surge com o objectivo da integração e cooperação do sector eléctrico Português e Espanhol, no qual é possível negociar preços e volumes de energia. Actualmente, as entidades podem negociar através de um mercado bolsista ou num mercado de contratos bilaterais. Uma análise dos mercados de electricidade existentes mostra que estes estão longe de estarem liberalizados. As tarifas não reflectem o efeito da competitividade. Além disso, o recurso a contratos bilaterais limita frequentemente os clientes a um único fornecedor de energia eléctrica. Nos últimos anos, têm surgido uma série de ferramentas computacionais que permitem simular, parte ou a totalidade, dos mercados de electricidade. Contudo, apesar das suas potencialidades, muitos simuladores carecem de flexibilidade e generalidade. Nesta perspectiva, esta dissertação tem como principal objectivo o desenvolvimento de um simulador de mercados de energia eléctrica que possibilite lidar com as dificuldades inerentes a este novo modelo de mercado, recorrendo a agentes computacionais autónomos. A dissertação descreve o desenho e a implementação de um simulador simplificado para negociação de contratos bilaterais em mercados de energia, com particular incidência para o desenho das estratégias a utilizar pelas partes negociais. Além disso, efectua-se a descrição de um caso prático, com dados do MIBEL. Descrevem-se também várias simulações computacionais, envolvendo retalhistas e consumidores de energia eléctrica, que utilizam diferentes estratégias negociais. Efectua-se a análise detalhada dos resultados obtidos. De forma sucinta, os resultados permitem concluir que as melhores estratégias para cada entidade, no caso prático estudado, são: a estratégia de concessões fixas, para o retalhista, e a estratégia de concessões baseada no volume de energia, para o consumidor.
Resumo:
Power systems have been through deep changes in recent years, namely with the operation of competitive electricity markets in the scope and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles, (V2G) and consumers), to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização de Telecomunicações
Resumo:
The ability to solve conflicting beliefs is crucial for multi- agent systems where the information is dynamic, incomplete and dis- tributed over a group of autonomous agents. The proposed distributed belief revision approach consists of a distributed truth maintenance sy- stem and a set of autonomous belief revision methodologies. The agents have partial views and, frequently, hold disparate beliefs which are au- tomatically detected by system’s reason maintenance mechanism. The nature of these conflicts is dynamic and requires adequate methodolo- gies for conflict resolution. The two types of conflicting beliefs addressed in this paper are Context Dependent and Context Independent Conflicts which result, in the first case, from the assignment, by different agents, of opposite belief statuses to the same belief, and, in the latter case, from holding contradictory distinct beliefs. The belief revision methodology for solving Context Independent Con- flicts is, basically, a selection process based on the assessment of the cre- dibility of the opposing belief statuses. The belief revision methodology for solving Context Dependent Conflicts is, essentially, a search process for a consensual alternative based on a “next best” relaxation strategy.
Resumo:
Belief revision is a critical issue in real world DAI applications. A Multi-Agent System not only has to cope with the intrinsic incompleteness and the constant change of the available knowledge (as in the case of its stand alone counterparts), but also has to deal with possible conflicts between the agents’ perspectives. Each semi-autonomous agent, designed as a combination of a problem solver – assumption based truth maintenance system (ATMS), was enriched with improved capabilities: a distributed context management facility allowing the user to dynamically focus on the more pertinent contexts, and a distributed belief revision algorithm with two levels of consistency. This work contributions include: (i) a concise representation of the shared external facts; (ii) a simple and innovative methodology to achieve distributed context management; and (iii) a reduced inter-agent data exchange format. The different levels of consistency adopted were based on the relevance of the data under consideration: higher relevance data (detected inconsistencies) was granted global consistency while less relevant data (system facts) was assigned local consistency. These abilities are fully supported by the ATMS standard functionalities.
Resumo:
Environmental management is a complex task. The amount and heterogeneity of the data needed for an environmental decision making tool is overwhelming without adequate database systems and innovative methodologies. As far as data management, data interaction and data processing is concerned we here propose the use of a Geographical Information System (GIS) whilst for the decision making we suggest a Multi-Agent System (MAS) architecture. With the adoption of a GIS we hope to provide a complementary coexistence between heterogeneous data sets, a correct data structure, a good storage capacity and a friendly user’s interface. By choosing a distributed architecture such as a Multi-Agent System, where each agent is a semi-autonomous Expert System with the necessary skills to cooperate with the others in order to solve a given task, we hope to ensure a dynamic problem decomposition and to achieve a better performance compared with standard monolithical architectures. Finally, and in view of the partial, imprecise, and ever changing character of information available for decision making, Belief Revision capabilities are added to the system. Our aim is to present and discuss an intelligent environmental management system capable of suggesting the more appropriate land-use actions based on the existing spatial and non-spatial constraints.
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.