952 resultados para Cellular automata model
Resumo:
Meningioma tumor growth involves the subarachnoid space that contains the cerebrospinal fluid. Modeling tumor growth in this microenvironment has been associated with widespread leptomeningeal dissemination, which is uncharacteristic of human meningiomas. Consequently, survival times and tumor properties are varied, limiting their utility in testing experimental therapies. We report the development and characterization of a reproducible orthotopic skull-base meningioma model in athymic mice using the IOMM-Lee cell line. Localized tumor growth was obtained by using optimal cell densities and matrigel as the implantation medium. Survival times were within a narrow range of 17-21 days. The xenografts grew locally compressing surrounding brain tissue. These tumors had histopathologic characteristics of anaplastic meningiomas including high cellularity, nuclear pleomorphism, cellular pattern loss, necrosis and conspicuous mitosis. Similar to human meningiomas, considerable invasion of the dura and skull and some invasion of adjacent brain along perivascular tracts were observed. The pattern of hypoxia was also similar to human malignant meningiomas. We use bioluminescent imaging to non-invasively monitor the growth of the xenografts and determine the survival benefit from temozolomide treatment. Thus, we describe a malignant meningioma model system that will be useful for investigating the biology of meningiomas and for preclinical assessment of therapeutic agents.
Resumo:
Exposure to air pollutants such as formaldehyde (FA) leads to inflammation, oxidative stress and immune-modulation in the airways and is associated with airway inflammatory disorders such as asthma. The purpose of our study was to investigate the effects of exposure to FA on the allergic lung inflammation. The hypothesized link between reactive oxygen species and the effects of FA was also studied. To do so, male Wistar rats were exposed to FA inhalation (1%, 90 min daily) for 3 days. and subsequently sensitized with ovalbumin (OVA)-alum by subcutaneous route One week later the rats received another OVA-alum injection by the same route (booster). Two weeks later the rats were challenged with aerosolized OVA. The OVA challenge of rats upon FA exposure induced an elevated release of LTB(4). TXB(2), IL-1 beta, IL-6 and VEGF in lung cells, increased phagocytosis and lung vascular permeability, whereas the cell recruitment into lung was reduced. FA inhalation induced the oxidative burst and the nitration of proteins in the lung Vitamins C, E and apocynin reduced the levels of LTB(4) in BAL-cultured cells of the FA and FA/OVA groups, but Increased the cell influx into the lung of the FA/OVA rats. In OVA-challenged rats, the exposure to FA was associated to a reduced lung endothelial cells expression of intercellular cell adhesion molecule 1 (ICAM-1) In conclusion, our findings suggest that FA down regulate the cellular migration into the lungs after an allergic challenge and increase the ability of resident lung cells likely macrophages to generate inflammatory mediators, explaining the increased lung vascular permeability Our data are indicative that the actions of FA involve mechanisms related to endothelium-leukocyte interactions and oxidative stress, as far as the deleterious effects of this air pollutant on airways are concerned. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to reduce cell growth in several tumors. Among these possible antineoplastic drugs are cyclooxygenase-2 (COX-2)-selective drugs, such as celecoxib, in which antitumoral mechanisms were evaluated in rats bearing Walker-256 (W256) tumor. W256 carcinosarcoma cells were inoculated subcutaneously (10(7) cells/rat) in rats submitted to treatment with celecoxib (25 mg kg(-1)) or vehicle for 14 days. Tumor growth, body-weight gain, and survival data were evaluated. The mechanisms, such as COX-2 expression and activity, oxidative stress, by means of enzymes and lipoperoxidation levels, and apoptosis mediators were also investigated. A reduction in tumor growth and an increased weight gain were observed. Celecoxib provided a higher incidence of survival compared with the control group. Cellular effects are probably COX-2 independent, because neither enzyme expression nor its activity, measured by tumoral PGE(2), showed significant difference between groups. It is probable that this antitumor action is dependent on an apoptotic way, which has been evaluated by the expression of the antiapoptotic protein Bcl-xL, in addition to the cellular changes observed by electronic microscopy. Celecoxib has also a possible involvement with redox homeostasis, because its administration caused significant changes in the activity of oxidative enzymes, such as catalase and superoxide dismutase. These results confirm the antitumor effects of celecoxib in W256 cancer model, contributing to elucidating its antitumoral mechanism and corroborating scientific literature about its effect on other types of cancer.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 mu M is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Meriones unguiculatus (Mongolian) gerbil has demonstrated significant prostatic responses to hormonal treatments, and to drugs against human prostatic hyperplasia Spontaneous neoplasia develops in the older animals. Thirty gerbils (age 18 months) were divided into non-affected and prostatic lesion bearers and the prostate lesions were evaluated morphologically, immunohistochemically and quantitatively. The most frequent changes were in epithelial sites and, namely prostatic intraepithelial neoplasias, microinvasive carcinomas and adenocarcinomas. In the stromal compartment, cellular hyperplasia, when verified, was always associated with the sites of anomalous epithelium. Additionally, larger deposition of collagen fibrils, generating stromal fibrosis, was found in all the old gerbils analysed. The quantitative analysis showed that prostatic tissue proportions differed in altered areas, being specific for each lesion type. Isolated nuclear and nucleolar parameters were not effective in diagnosing the malign potential of lesions. However, the cellular proliferation and death indexes indicated larger cellular turnover in invasive lesions such as carcinomas. With these analyses, it could be verified that old gerbils present high propensity to develop spontaneous prostate changes and this may aid in a better understanding of the biological behaviour of human prostate cancer.
Resumo:
This paper presents a method for the quantification of cellular rejection in endomyocardial biopsies of patients submitted to heart transplant. The model is based on automatic multilevel thresholding, which employs histogram quantification techniques, histogram slope percentage analysis and the calculation of maximum entropy. The structures were quantified with the aid of the multi-scale fractal dimension and lacunarity for the identification of behavior patterns in myocardial cellular rejection in order to determine the most adequate treatment for each case.
Resumo:
The pathogenicity and immunogenicity of six recently isolated Paracoccidioides brasiliensis samples derived from patients presenting distinct and well defined clinical forms of paracoccidioidomycosis (PCM) were compared as to their virulence, tropism to different organs and ability to induce specific cellular and humoral immune response in susceptible (B10.A) inbred mice. Isolates Pb44 and Pb47 were obtained from acute cases, Pb50 from a chronic severe form, Pb45 from a chronic moderate case and both Pb56 and Pb57 from chronic mild forms of PCM. Pathogenicity and tropism of each fungal sample were evaluated by LD50% estimation, examination of gross lesions on various organs at 2, 4, 12 and 16 weeks post-infection, and by colony-forming unit (CFU) counts in the lungs at week 16 post-infection of mice. Fungal tropism in human PCM and in B10.A mice was always dissociated. A well defined relationship between virulence of the fungal sample and the clinical findings of the correspondent patient was not evident, although a tendency to higher LD50% and less intense paracoccidioidic lesions was observed in mice infected with Pb56 and Pb57. The specific DTH response patterns varied according to the infectant sample, but positive DTH reactions at the beginning of the infection and a tendency to anergy or low DTH responses at week 12 and/or week 16 post-infection were always observed. A correspondence between the DTH response in humans and in mice was noticeable only when the isolates from the most benign cases (Pb56 and Pb57) were considered. The specific antibody patterns in mice and in the correspondent patients were also not analogous. Collectively, these results indicate that an association between the fungal pathogenicity and immunogenicity in the human disease and in susceptible mice was discernible only when isolates obtained from very mild cases (Pb56 and Pb57) were considered.
Resumo:
Viable cells immobilized in inert supports are currently studied for a wide range of bioprocesses. The intrinsic advantages of such systems over suspended cultures incite new research, including studies on fundamental aspects as well as on the industrial viability of these non-conventional processes. In aerobic culture of filamentous fungi, scale-up is hindered by oxygen mass transfer limitation through the support material and bioprocess kinetics must be studied together with mass transfer limitation. In this work, experimental and simulated data of cephalosporin C production were compared. Concentrations in the bulk fermentation medium and cellular mass profiles inside the bioparticles are focused. Immobilized cells were used in a tower bioreactor, operated in fed-batch mode. To describe the radial variation of oxygen concentration within the pellet, a dead core model was used. Despite the extremely low sugar concentrations, bioreaction rates in the pellets were limited by the dissolved oxygen concentration. Cell growth occurs only in the outer layers, a result also confirmed by scanning electron microscopy. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Taking into consideration that glutatione S-transferase (GST) and cellular proliferation play a crucial role during carcinogenesis, the goal of this study was to investigate the expression of placental GST, called GST-P, and proliferating cellular nuclear antigen (PCNA) by means of immunohistochemistry during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide (4NQO). This is a useful model for studying oral squamous cell carcinoma phase by phase. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution by drinking water for 4, 12 or 20 weeks. Ten animals were used as negative control. GST-P positive foci were detected in non-neoplastic oral cells at 4 weeks of 4NQO administration. In the same way, GST-P positive cells were detected in pre-neoplastic lesions and squamous cell carcinomas induced after 12 and 20 weeks-treatment, respectively. None of the control animals expressed GST-P positive cells. Regarding cellular proliferation, PCNA positive nuclei were higher at 12 and 20 weeks following 4NQO exposure (p < 0.05) when compared to negative control. These results suggest that the expression of GST-P is correlated with cellular proliferation, in which GST-P is associated with risk and progression of oral cancer, whereas PCNA is closely involved during neoplastic conversion. (c) 2007 Published by Elsevier GmbH.
Resumo:
The specific delayed-type hypersensitivity (DTH) response was evaluated in resistant (A/SN) and susceptible (B10.A) mice intraperitoneally infected with yeasts from a virulent (Pb18) or from a non-virulent (Pb265) Paracoccidioides brasiliensis isolates. Both strains of mice were footpad challenged with homologous antigens. Pb18 infected A/SN mice developed an evident and persistent DTH response late in the course of the disease (90th day on) whereas B10.A animals mounted a discrete and ephemeral DTH response at the 14th day post-infection. A/SN mice infected with Pb265 developed cellular immune responses whereas B10.A mice were almost always anergic. Histological analysis of the footpads of infected mice at 48 hours after challenge showed a mixed infiltrate consisting of predominantly mononuclear cells. Previous infection of resistant and susceptible mice with Pb18 did not alter their DTH responses against heterologous unrelated antigens (sheep red blood cells and dinitrofluorobenzene) indicating that the observed cellular anergy was antigen-specific. When fungal related antigens (candidin and histoplasmin) were tested in resistant mice, absence of cross-reactivity was noted. Thus, specific DTH responses against P. brasiliensis depend on both the host's genetically determined resistance and the virulence of the fungal isolate.