871 resultados para Cathode ray tubes
Resumo:
The microquasar LS 5039 has recently been detected as a source of very high energy (VHE) $\gamma$-rays. This detection, that confirms the previously proposed association of LS 5039 with the EGRET source 3EG~J1824$-$1514, makes of LS 5039 a special system with observational data covering nearly all the electromagnetic spectrum. In order to reproduce the observed spectrum of LS 5039, from radio to VHE $\gamma$-rays, we have applied a cold matter dominated jet model that takes into account accretion variability, the jet magnetic field, particle acceleration, adiabatic and radiative losses, microscopic energy conservation in the jet, and pair creation and absorption due to the external photon fields, as well as the emission from the first generation of secondaries. The radiative processes taken into account are synchrotron, relativistic Bremsstrahlung and inverse Compton (IC). The model is based on a scenario that has been characterized with recent observational results, concerning the orbital parameters, the orbital variability at X-rays and the nature of the compact object. The computed spectral energy distribution (SED) shows a good agreement with the available observational data.
Resumo:
Kaksifaasivirtauksen kuvaamiseen käytettävät mallit, ja menetelmät kaksifaasivirtauksen painehäviön määrittämiseksi kehittyvät yhä monimutkaisimmiksi. Höyrystinputkissa tapahtuvien painehäviöiden arvioinnin vaatiman laskennan suorittamiseksi tietokoneohjelman kehittäminen on välttämätöntä. Tässä työssä on kehitetty itsenäinen PC-ohjelma painehäviöiden arvioimiseksi pakotetulle konvektiovirtaukselle pystysuorissa höyrykattilan höyrystinputkissa. Veden ja vesihöyryn aineominaisuuksien laskentaan käytetään IAPWS-IF97 –yhtälökokoelmaa sekä muita tarvittavia IAPWS:n suosittelemia yhtälöitä. Höyrystinputkessa kulloinkin vallitsevan virtausmuodon määrittämiseen käytetään sovelluskelpoisia virtausmuotojen välisiä rajoja kuvaavia yhtälöitä. Ohjelmassa käytetään painehäviön määritykseen kirjallisuudessa julkaistuja yhtälöitä, virtausmuodosta riippuen, alijäähtyneelle virtaukselle, kupla-, tulppa- ja rengasvirtaukselle sekä tulistetun höyryn virtaukselle. Ohjelman laskemia painehäviöarvioita verrattiin kirjallisuudesta valittuihin mittaustuloksiin. Laskettujen painehäviöiden virhe vaihteli välillä –19.5 ja +23.9 %. Virheiden itseisarvojen keskiarvo oli 12.8 %.
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
Vertebral fracture assessments (VFAs) using dual-energy X-ray absorptiometry increase vertebral fracture detection in clinical practice and are highly reproducible. Measures of reproducibility are dependent on the frequency and distribution of the event. The aim of this study was to compare 2 reproducibility measures, reliability and agreement, in VFA readings in both a population-based and a clinical cohort. We measured agreement and reliability by uniform kappa and Cohen's kappa for vertebral reading and fracture identification: 360 VFAs from a population-based cohort and 85 from a clinical cohort. In the population-based cohort, 12% of vertebrae were unreadable. Vertebral fracture prevalence ranged from 3% to 4%. Inter-reader and intrareader reliability with Cohen's kappa was fair to good (0.35-0.71 and 0.36-0.74, respectively), with good inter-reader and intrareader agreement by uniform kappa (0.74-0.98 and 0.76-0.99, respectively). In the clinical cohort, 15% of vertebrae were unreadable, and vertebral fracture prevalence ranged from 7.6% to 8.1%. Inter-reader reliability was moderate to good (0.43-0.71), and the agreement was good (0.68-0.91). In clinical situations, the levels of reproducibility measured by the 2 kappa statistics are concordant, so that either could be used to measure agreement and reliability. However, if events are rare, as in a population-based cohort, we recommend evaluating reproducibility using the uniform kappa, as Cohen's kappa may be less accurate.
Resumo:
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 1012 electron volts and are bright sources of very-high-energy (VHE) γ-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE γ-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
Resumo:
We explore the possible association between the microquasar LSI +61°303 and the EGRET source 2CG 135+01/3EG J0241+6103 by studying, with a detailed numerical model, whether this system can produce the emission and the variability detected by EGRET (>100 MeV) through inverse Compton (IC) scattering. Our numerical approach considers a population of relativistic electrons entrained in a cylindrical inhomogeneous jet, interacting with both the radiation and the magnetic fields, taking into account the Thomson and Klein-Nishina regimes of interaction. Our results reproduce the observed spectral characteristics and variability at γ-rays, thus strengthening the identification of LSI +61°303 as a high-energy γ-ray source.
Resumo:
We report on the results of the spectral and timing analysis of a BeppoSAX observation of the microquasar system LS 5039/RX J1826.2-1450. The source was found in a low-flux state with Fx(1-10 keV)= 4.7 x 10^{-12} erg cm^{-2} s^{-1}, which represents almost one order of magnitude lower than a previous RXTE observation 2.5 years before. The 0.1--10 keV spectrum is described by an absorbed power-law continuum with photon-number spectral index Gamma=1.8+-0.2 and hydrogen column density of NH=1.0^{+0.4}_{-0.3} x 10^{22} cm^{-2}. According to the orbital parameters of the system the BeppoSAX observation covers the time of an X-ray eclipse should one occur. However, the 1.6-10 keV light curve does not show evidence for such an event, which allows us to give an upper limit to the inclination of the system. The low X-ray flux detected during this observation is interpreted as a decrease in the mass accretion rate onto the compact object due to a decrease in the mass-loss rate from the primary.
Resumo:
One of the most important reference groups for Mycenaean pottery is the Mycenae/Berbati (MB). In several studies, a second group has been identified (MBKR). The chemical compositions were similar to MB, but with important differences in the Na, K and Rb contents. The present study suggests that these differences are due to selective alteration and contamination processes that are indirectly determined by the original firing temperature. Therefore, groups MB and MBKR should be considered as a single reference group.
Resumo:
Wide-range spectral coverage of blazar-type active galactic nuclei is of paramount importance for understanding the particle acceleration mechanisms assumed to take place in their jets. The Major Atmospheric Gamma Imaging Cerenkov (MAGIC) telescope participated in three multiwavelength (MWL) campaigns, observing the blazar Markarian (Mkn) 421 during the nights of April 28 and 29, 2006, and June 14, 2006. Aims. We analyzed the corresponding MAGIC very-high energy observations during 9 nights from April 22 to 30, 2006 and on June 14, 2006. We inferred light curves with sub-day resolution and night-by-night energy spectra. Methods. MAGIC detects γ-rays by observing extended air showers in the atmosphere. The obtained air-shower images were analyzed using the standard MAGIC analysis chain. Results. A strong γ-ray signal was detected from Mkn 421 on all observation nights. The flux (E > 250 GeV) varied on night-by-night basis between (0.92±0.11) × 10-10 cm-2 s-1 (0.57 Crab units) and (3.21±0.15) × 10-10 cm-2 s-1 (2.0 Crab units) in April 2006. There is a clear indication for intra-night variability with a doubling time of 36± min on the night of April 29, 2006, establishing once more rapid flux variability for this object. For all individual nights γ-ray spectra could be inferred, with power-law indices ranging from 1.66 to 2.47. We did not find statistically significant correlations between the spectral index and the flux state for individual nights. During the June 2006 campaign, a flux substantially lower than the one measured by the Whipple 10-m telescope four days later was found. Using a log-parabolic power law fit we deduced for some data sets the location of the spectral peak in the very-high energy regime. Our results confirm the indications of rising peak energy with increasing flux, as expected in leptonic acceleration models.
Resumo:
Microquasars are stellar x-ray binaries that behave as a scaled down version of extragalactic quasars. The star LS 5039 is a new microquasar system with apparent persistent ejection of relativistic plasma at a 3 kiloparsec distance from the sun. It may also be associated with a gamma-ray source discovered by the Energetic Gamma Ray Experiment Telescope (EGRET) on board the COMPTON-Gamma Ray Observatory satellite. Before the discovery of LS 5039, merely a handful of microquasars had been identified in the Galaxy, and none of them was detected in high-energy gamma-rays.
Resumo:
Context.Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Aims.We aim to make quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. Methods.We study the high-energy emission generated by the relativistic electrons which produce the non-thermal radio source in IRAS 16547-4247. We also study the result of proton acceleration at the terminal shock of the thermal jet and make estimates of the secondary gamma rays and electron-positron pairs produced by pion decay. Results.We present spectral energy distributions for the southern lobe of IRAS 16547-4247, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain. The source may also be detectable in X-rays through long exposures with current X-ray instruments. Conclusions.Gamma-ray telescopes such as GLAST, and even ground-based Cherenkov arrays of new generation can be used to study non-thermal processes occurring during the formation of massive stars.
Resumo:
Among unidentified gamma-ray sources in the galactic plane, there are some that present significant variability and have been proposed to be high-mass microquasars. To deepen the study of the possible association between variable low galactic latitude gamma-ray sources and microquasars, we have applied a leptonic jet model based on the microquasar scenario that reproduces the gamma-ray spectrum of three unidentified gamma-ray sources, 3EG J1735-1500, 3EG J1828+0142 and GRO J1411-64, and is consistent with the observational constraints at lower energies. We conclude that if these sources were generated by microquasars, the particle acceleration processes could not be as efficient as in other objects of this type that present harder gamma-ray spectra. Moreover, the dominant mechanism of high-energy emission should be synchrotron self-Compton (SSC) scattering, and the radio jets may only be observed at low frequencies. For each particular case, further predictions of jet physical conditions and variability generation mechanisms have been made in the context of the model. Although there might be other candidates able to explain the emission coming from these sources, microquasars cannot be excluded as counterparts. Observations performed by the next generation of gamma-ray instruments, like GLAST, are required to test the proposed model.