952 resultados para Carriers of truth
Resumo:
Fanconi anemia (FA) is a rare, genetically heterogeneous autosomal recessive disorder associated with progressive aplastic anemia, congenital abnormalities, and cancer. FA has a very high incidence in the Afrikaner population of South Africa, possibly due to a founder effect. Previously we observed allelic association between polymorphic markers flanking the FA group A gene (FANCA) and disease chromosomes in Afrikaners. We genotyped 26 FA families with microsatellite and single nucleotide polymorphic markers and detected five FANCA haplotypes. Mutation scanning of the FANCA gene revealed association of these haplotypes with four different mutations. The most common was an intragenic deletion of exons 12–31, accounting for 60% of FA chromosomes in 46 unrelated Afrikaner FA patients, while two other mutations accounted for an additional 20%. Screening for these mutations in the European populations ancestral to the Afrikaners detected one patient from the Western Ruhr region of Germany who was heterozygous for the major deletion. The mutation was associated with the same unique FANCA haplotype as in Afrikaner patients. Genealogical investigation of 12 Afrikaner families with FA revealed that all were descended from a French Huguenot couple who arrived at the Cape on June 5, 1688, whereas mutation analysis showed that the carriers of the major mutation were descendants of this same couple. The molecular and genealogical evidence is consistent with transmission of the major mutation to Western Germany and the Cape near the end of the 17th century, confirming the existence of a founder effect for FA in South Africa.
Resumo:
Chronic Pseudomonas aeruginosa infection occurs in 75–90% of patients with cystic fibrosis (CF). It is the foremost factor in pulmonary function decline and early mortality. A connection has been made between mutant or missing CF transmembrane conductance regulator (CFTR) in lung epithelial cell membranes and a failure in innate immunity leading to initiation of P. aeruginosa infection. Epithelial cells use CFTR as a receptor for internalization of P. aeruginosa via endocytosis and subsequent removal of bacteria from the airway. In the absence of functional CFTR, this interaction does not occur, allowing for increased bacterial loads in the lungs. Binding occurs between the outer core of the bacterial lipopolysaccharide and amino acids 108–117 in the first predicted extracellular domain of CFTR. In experimentally infected mice, inhibiting CFTR-mediated endocytosis of P. aeruginosa by inclusion in the bacterial inoculum of either free bacterial lipopolysaccharide or CFTR peptide 108–117 resulted in increased bacterial counts in the lungs. CFTR is also a receptor on gastrointestinal epithelial cells for Salmonella enterica serovar Typhi, the etiologic agent of typhoid fever. There was a significant decrease in translocation of this organism to the gastrointestinal submucosa in transgenic mice that are heterozygous carriers of a mutant ΔF508 CFTR allele, suggesting heterozygous CFTR carriers may have increased resistance to typhoid fever. The identification of CFTR as a receptor for bacterial pathogens could underlie the biology of CF lung disease and be the basis for the heterozygote advantage for carriers of mutant alleles of CFTR.
Resumo:
Carriers of BRCA2 germline mutations are at high risk to develop early-onset breast cancer. The underlying mechanisms of how BRCA2 inactivation predisposes to malignant transformation have not been established. Here, we provide direct functional evidence that human BRCA2 promotes homologous recombination (HR), which comprises one major pathway of DNA double-strand break repair. We found that up-regulated HR after transfection of wild-type (wt) BRCA2 into a human tumor line with mutant BRCA2 was linked to increased radioresistance. In addition, BRCA2-mediated enhancement of HR depended on the interaction with Rad51. In contrast to the tumor suppressor BRCA1, which is involved in multiple DNA repair pathways, BRCA2 status had no impact on the other principal double-strand break repair pathway, nonhomologous end joining. Thus, there exists a specific regulation of HR by BRCA2, which may function to maintain genomic integrity and suppress tumor development in proliferating cells.
Resumo:
Aberrant glycosylation of the mucin molecule (encoded by the gene MUC-1) on human epithelial cell tumors leads to the exposure of tumor-associated epitopes recognized by patients' antibodies and cytotoxic T cells. Consequently, these epitopes could be considered targets for immunotherapy. We designed a cellular vaccine, employing, instead of tumor cells, autologous Epstein-Barr virus (EBV)-immortalized B cells as carriers of tumor-associated mucin, to take advantage of their costimulatory molecules for T-cell activation. The vaccine was tested in chimpanzees because of the identity of the human and chimpanzee MUC-1 tandem repeat sequence. EBV-immortalized B cells derived from two chimpanzees were transfected with MUC-1 cDNA, treated with glycosylation inhibitor phenyl-N-acetyl-alpha-D-galactosaminide to expose tumor-associated epitopes, irradiated, and injected subcutaneously four times at 3-week intervals. One vaccine preparation also contained cells transduced with the interleukin 2 (IL-2) cDNA and producing low levels of IL-2. Already after the first injection we found in the peripheral blood measurable frequency of cytotoxic T-cell precursors specific for underglycosylated mucin. The highest frequency observed was after the last boost, in the lymph node draining the vaccination site. Delayed-type hypersensitivity reaction to the injected immunogens was also induced, whereas no appearance of mucin-specific antibodies was seen. Long-term observation of the animals yielded no signs of adverse effects of this immunization. Autologous antigen-presenting cells, like EBV-immortalized B cells, expressing tumor-associated antigens are potentially useful immunogens for induction of cellular anti-tumor responses in vivo.
Resumo:
To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.
Resumo:
Lactose, in particular α-lactose monohydrate, is the most used carrier for inhalation. Its surface and solid-state properties are of paramount importance in determining drug aerosolization performance. However, these properties may be altered by processing, such as micronization, thus affecting the product performance and stability. The present research project focused on the study of the effect of lactose solid-state on the aerosolization performance of drug-carrier mixtures, giving particular attention to the impact of micronization on lactose physico-chemical properties. The formation of a fraction of hygroscopic anhydrous α-lactose, rather than amorphous lactose, as a consequence of the mechanical stress stemming from micronization was evidenced by 1H NMR, XRPD and DSC analyses performed on samples of micronized lactose. The development of a new DVS method capable to identify and quantify different forms of α-lactose (hygroscopic anhydrous, stable anhydrous and amorphous), even simultaneously present in the same sample, confirmed the results obtained with the above-mentioned techniques. The influence of lactose solid-state on drug respirability was then evaluated through the preparation and in vitro aerodynamic assessment of ternary and binary mixtures containing two different drugs. In particular, the use, as carriers, of anhydrous forms of α-lactose in place of the conventional α-lactose monohydrate resulted in significantly improved respirability in the case of salbutamol sulphate and poorer performance in the case of budesonide. In an attempt to rationalize the obtained results, IGC was selected as a tool to investigate possible variations in the surface energy of the studied lactose carriers and APIs. A direct correlation between the total surface free energy of lactose carriers and drug respirability was not found. However, salbutamol sulphate and budesonide exhibited different specific surface free energy, to which the difference in the aerosolization performance may be, at least in part, ascribed.
Resumo:
The micronutrient selenium is essential to human physiology. As the amino acid selenocysteine, it is inserted into selenoproteins with a wide range of functions including antioxidant capacity, thyroid hormone metabolism, improvement of immune system, brain function, fertility and reproduction. Low selenium status has been associated with increased risk for chronic diseases, such as cancer, type-2 diabetes and cardiovascular disease. In this context, several studies have been conducted in order to investigate if selenium supplementation could reduce the risk of such diseases. However, genetic variations may interfere in the response of individuals to a dietary intervention and must be considered as a important source of inter-individual variation. Therefore, this study was conducted was conducted to investigate the influence of genetic variations in selenoproteins genes on the response to an intervention with Brazil nuts, the richest source of selenium known in nature. The study included 130 healthy volunteers with both genders, aged 20 to 60 years old selected in University of São Paulo. They received nuts for 8 weeks, eating one nut a day, and did a washout period for more 8 weeks. All volunteers had a blood sampling collection every 4 weeks during 4 months, in a total of 5. The following analysis were done: anthropometric measurements, lipid profile, plasma malondialdehyde, plasma and erythrocyte Se, selenoprotein P, plasma and erythrocyte GPx activity, gene expression of GPX1, SEPP1, SELS and SEP15. The volunteers were also genotyped for SNPs rs1050450, rs3811699, rs1800699, rs713041, rs3877899, rs7579, rs34713741 and rs5845. Each unit of Brazil nut provided an average of 300 µg of selenium. All 130 volunteers completed the protocol. The concentrations of total cholesterol and glucose decreased after 8 weeks of supplementation. Moreover, HDL concentrations were higher for carriers of the variant T allele for GPX4_rs713041. The frequencies of the variant genotypes were 5,4% for rs1050450, rs3811699 e rs1088668, 10% for rs3877899, 19,2% for rs713041 e rs7579, 11,5% for rs5845 and 8,5% for rs34713741. The levels of the five biomarkers increased significantly after supplementation. In addition, erythrocyte GPx activity was influenced by rs1050450, rs713041 and rs5845; erythrocyte selenium was influenced by rs5845 and plasma selenium by rs3877899. Gene expression of GPX1, SEPP1 and SEP15 were higher after supplementation. The SNP rs1050450 influenced GPX1 mRNA expression and rs7579 influenced SEPP1 mRNA expression. Therefore, it can be concluded that the supplementation with one of Brazil nut for 8 weeks was efficient to reduce total cholesterol and glucose levels and to increase the concentrations of the main biomarkers of selenium status in healthy adults. Furthermore, our results suggest that GPX4_rs713041 might interfere on HDL concentrations and GPx1 activity, GPX1_rs1050450 might interfere on GPx1 activity, SEP15_rs5845 might interfere on GPx1 activity and erythrocyte selenium and SEPP1_3877899 might interfere on plasma Se levels. Therefore, the effect of genetic variations should be considered in future nutritional interventions evaluating the response to Brazil nut supplementation.
Resumo:
In t-norm based systems many-valued logic, valuations of propositions form a non-countable set: interval [0,1]. In addition, we are given a set E of truth values p, subject to certain conditions, the valuation v is v=V(p), V reciprocal application of E on [0,1]. The general propositional algebra of t-norm based many-valued logic is then constructed from seven axioms. It contains classical logic (not many-valued) as a special case. It is first applied to the case where E=[0,1] and V is the identity. The result is a t-norm based many-valued logic in which contradiction can have a nonzero degree of truth but cannot be true; for this reason, this logic is called quasi-paraconsistent.
Resumo:
Mitochondrial diseases, predominantly mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), may occasionally underlie or coincide with ischemic stroke (IS) in young and middle-aged individuals. We searched for undiagnosed patients with MELAS in a target subpopulation of unselected young IS patients enrolled in the Stroke in Young Fabry Patients study (sifap1). Among the 3291 IS patients aged 18-55 years recruited to the sifap1 study at 47 centers across 14 European countries, we identified potential MELAS patients with the following phenotypic features: (a) diagnosed cardiomyopathy or (b) presence of two of the three following findings: migraine, short stature (≤165 cm for males; ≤155 cm for females), and diabetes. Identified patients' blood samples underwent analysis of the common MELAS mutation, m.3243A>G in the MTTL1 gene of mitochondrial DNA. Clinical and cerebral MRI features of the mutation carriers were reviewed. We analyzed blood samples of 238 patients (177 with cardiomyopathy) leading to identification of four previously unrecognized MELAS main mutation carrier-patients. Their clinical and MRI characteristics were within the expectation for common IS patients except for severe hearing loss in one patient and hyperintensity of the pulvinar thalami on T1-weighted MRI in another one. Genetic testing for the m.3243A>G MELAS mutation in young patients with IS based on phenotypes suggestive of mitochondrial disease identifies previously unrecognized carriers of MELAS main mutation, but does not prove MELAS as the putative cause.
Resumo:
Imperfect: frontpiece wanting. cf. v.1, p. 4211.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 187-192.
Resumo:
"March 25, 2005."