947 resultados para Carnitine palmitoyltransférase-1-alpha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2. However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2, bicarbonate, carbonate and protons) on the physiological responses to elevated CO2. Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2. Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals, including humans, express two isoforms of acetyl-CoA carboxylase (EC 6.4.1.2), ACC1 (Mr = 265 kDa) and ACC2 (Mr = 280 kDa). The predicted amino acid sequence of ACC2 contains an additional 136 aa relative to ACC1, 114 of which constitute the unique N-terminal sequence of ACC2. The hydropathic profiles of the two ACC isoforms generally are comparable, except for the unique N-terminal sequence in ACC2. The sequence of amino acid residues 1–20 of ACC2 is highly hydrophobic, suggesting that it is a leader sequence that targets ACC2 for insertion into membranes. The subcellular localization of ACC2 in mammalian cells was determined by performing immunofluorescence microscopic analysis using affinity-purified anti-ACC2-specific antibodies and transient expression of the green fluorescent protein fused to the C terminus of the N-terminal sequences of ACC1 and ACC2. These analyses demonstrated that ACC1 is a cytosolic protein and that ACC2 was associated with the mitochondria, a finding that was confirmed further by the immunocolocalization of a known human mitochondria-specific protein and the carnitine palmitoyltransferase 1. Based on analyses of the fusion proteins of ACC–green fluorescent protein, we concluded that the N-terminal sequences of ACC2 are responsible for mitochondrial targeting of ACC2. The association of ACC2 with the mitochondria is consistent with the hypothesis that ACC2 is involved in the regulation of mitochondrial fatty acid oxidation through the inhibition of carnitine palmitoyltransferase 1 by its product malonyl-CoA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poxviruses encode proteins that block the activity of cytokines. Here we show that the study of such virulence factors can contribute to our understanding of not only virus pathogenesis but also the physiological role of cytokines. Fever is a nonspecific response to infection that contributes to host defense. Several cytokines induce an elevation of body temperature when injected into animals, but in naturally occurring fever it has been difficult to show that any cytokine has a critical role. We describe the first example of the suppression of fever by a virus and the molecular mechanism leading to it. Several vaccinia virus strains including smallpox vaccines express soluble interleukin 1 (IL-1) receptors, which bind IL-1 beta but not IL-1 alpha. These viruses prevent the febrile response in infected mice, whereas strains that naturally or through genetic engineering lack the receptor induce fever. Repair of the defective IL-1 beta inhibitor in the smallpox vaccine Copenhagen, a more virulent virus than the widely used vaccine strains Wyeth and Lister, suppresses fever and attenuates the disease. The vaccinia-induced fever was inhibited with antibodies to IL-1 beta. These findings provide strong evidence that IL-1 beta, and not other cytokines, is the major endogenous pyrogen in a poxvirus infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic RNA molecules, or ribozymes, have generated significant interest as potential therapeutic agents for controlling gene expression. Although ribozymes have been shown to work in vitro and in cellular assays, there are no reports that demonstrate the efficacy of synthetic, stabilized ribozymes delivered in vivo. We are currently utilizing the rabbit model of interleukin 1-induced arthritis to assess the localization, stability, and efficacy of exogenous antistromelysin hammerhead ribozymes. The matrix metalloproteinase stromelysin is believed to be a key mediator in arthritic diseases. It seems likely therefore that inhibiting stromelysin would be a valid therapeutic approach for arthritis. We found that following intraarticular administration ribozymes were taken up by cells in the synovial lining, were stable in the synovium, and reduced synovial interleukin 1 alpha-induced stromelysin mRNA. This effect was demonstrated with ribozymes containing various chemical modifications that impart nuclease resistance and that recognize several distinct sites on the message. Catalytically inactive ribozymes were ineffective, thus suggesting a cleavage-mediated mechanism of action. These results suggest that ribozymes may be useful in the treatment of arthritic diseases characterized by dysregulation of metalloproteinase expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These studies were undertaken to investigate the therapeutic mechanism of saturated solutions of KI, used to treat infectious and inflammatory diseases. The addition of 12-50 mM KI to cultured human peripheral blood mononuclear cells resulted in 319-395 mosM final solute concentration and induced interleukin (IL)-8 synthesis. Maximal IL-8 production was seen when 40 mM salt was added (375 mosM) and was equal to IL-8 induced by endotoxin or IL-1 alpha. However, there was no induction of IL-1 alpha, IL-1 beta, or tumor necrosis factor to account for the synthesis of IL-8; the effect of KI was not due to contaminating endotoxins. Hyperosmolar NaCl also induced IL-8 and increased steady-state levels of IL-8 mRNA similar to those induced by IL-1 alpha. IL-8 gene expression was elevated for 96 hr in peripheral blood mononuclear cells incubated with hyperosmolar NaCl. In human THP-1 macrophagic cells, osmotic stimulation with KI, NaI, or NaCl also induced IL-8 production. IL-1 signal transduction includes the phosphorylation of the p38 mitogen-activated protein kinase that is observed following osmotic stress. Using specific blockade of this kinase, a dose-response inhibition of hyperosmolar NaCl-induced IL-8 synthesis was observed, similar to that in cells stimulated with IL-1. Thus, these studies suggest that IL-1 and osmotic shock utilize the same mitogen-activated protein kinase for signal transduction and IL-8 synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pleckstrin homology (PH) domains are found in many signaling molecules and are thought to be involved in specific intermolecular interactions. Their binding to several proteins and to membranes containing 1-alpha-phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has been reported. A region that includes the PH domain has also been implicated in binding of phospholipase C-delta 1 (PLC-delta 1) to both PtdIns(4,5)P2 and D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] [Cifuentes, M. E., Delaney, T. & Rebecchi, M. J. (1994) J. Biol. Chem. 269, 1945-1948]. We report herein that the isolated PH domain from PLC-delta 1 binds to both PtdIns(4,5)P2 and Ins(1,4,5)P3 with high affinity and shows the same binding specificity seen by others with whole PLC-delta 1. Thus the PH domain is functionally and structurally modular. These results demonstrate stereo-specific high-affinity binding by an isolated PH domain and further support a functional role for PH domains in the regulation of PLC isoforms. Other PH domains did not bind strongly to the compounds tested, suggesting that inositol phosphates and phospholipids are not likely physiological ligands for all PH domains. Nonetheless, since all PH-domain-containing proteins are associated with membrane surfaces, several PH domains bind to specific sites on membranes, and PH domains appear to be electrostatically polarized, a possible general role for PH domains in membrane association is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal proliferation, migration, and differentiation are regulated by the sequential expression of particular genes at specific stages of development. Such processes rely on differential gene expression modulated through second-messenger systems. Early postnatal mouse cerebellar granule cells migrate into the internal granular layer and acquire differentiated properties. The neurotransmitter glutamate has been shown to play an important role in this developmental process. We show here by immunohistochemistry that the RelA subunit of the transcription factor NF-kappa B is present in several areas of the mouse brain. Moreover, immunofluorescence microscopy and electrophoretic mobility-shift assay demonstrate that in cerebellar granule cell cultures derived from 3- to 7-day-old mice, glutamate specifically activates the transcription factor NF-kappa B, as shown by binding of nuclear extract proteins to a synthetic oligonucleotide reproducing the kappa B site of human immunodeficiency virus. The use of different antagonists of the glutamate recpetors indicates that the effect of glutamate occurs mainly via N-methyl-D-aspartate (NMDA)-receptor activation, possibly as a result of an increase in intracellular Ca2+. The synaptic specificity of the effect is strongly suggested by the observation that glutamate failed to activate NF-kappa B in astrocytes, while cytokines, such as interleukin 1 alpha and tumor necrosis factor alpha, did so. The effect of glutamate appears to be developmentally regulated. Indeed, NF-kappa B is found in an inducible form in the cytoplasm of neurons of 3- to 7-day-old mice but is constitutively activated in the nuclei of neurons derived from older pups (8-10 days postnatal). Overall, these observations suggest the existence of a new pathway of trans-synaptic regulation of gene expression.