977 resultados para Cardiovascular response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To investigate objectively and noninvasively the role of cognitive demand on autonomic control of systemic cardiovascular and ocular accommodative responses in emmetropes and myopes of late-onset. METHODS. Sixteen subjects (10 men, 6 women) aged between 18 and 34 years (mean ± SD: 22.6 ± 4.4 years), eight emmetropes (EMMs; mean spherical equivalent [MSE] refractive error ± SD: 0.05 ± 0.24 D) and eight with late-onset myopia (LOMs; MSE ± SD: -3.66 ± 2.31 D) participated in the study. Subjects viewed stationary numerical digits monocularly within a Badal optical system (at both 0.0 and -3.0 D) while performing a two-alternative, forced-choice paradigm that matched cognitive loading across subjects. Five individually matched cognitive levels of increasing difficulty were used in random order for each subject. Five 20-second, continuous-objective recordings of the accommodative response measured with an open-view infrared autorefractor were obtained for each cognitive level, whereas simultaneous measurement of heart rate was continuously recorded with a finger-mounted piezoelectric pulse transducer for 5 minutes. Fast Fourier transformation of cardiovascular function allowed the relative power of the autonomic components to be assessed in the frequency domain, whereas heart period gave an indication of the time-domain response. RESULTS. Increasing the cognitive demand led to a significant reduction in the accommodative response in all subjects (0.0 D: by -0.35 ± 0.33 D; -3.0 D: by -0.31 ± 0.40 D, P < 0.001). The greater lag of LOMs compared with EMMs was not significant (P = 0.07) at both distance (0.38 ± 0.35 D) and near (0.14 ± 0.42 D). Mean heart period reduced with increasing levels of workload (P < 0.0005). LOMs exhibited a relative elevation in sympathetic system activity compared to EMMs. Within refractive groups, however, accommodative shifts with increasing cognition correlated with parasympathetic activity (r = 0.99, P < 0.001), more than with sympathetic activity (r = 0.62, P > 0.05). CONCLUSIONS. In an equivalent workload paradigm, increasing cognitive demand caused a reduction in accommodative response that was attributable principally to a concurrent reduction in the relative power of the parasympathetic component of the autonomic nervous system (ANS). The disparity in accommodative response between EMMs and LOMs, however, appears to be augmented by changes in the sympathetic nervous component of the systemic ANS. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the hypothesis that objective measures of open- and closed-loop ocular accommodation are related to systemic cardiovascular function, and ipso facto autonomic nervous system activity. METHODS: Sixty subjects (29 male; 31 female) varying in age from 18 to 33 years (average: 20.3 +/- 2.9 years) with a range of refractive errors [mean spherical equivalent (MSE): -7.12 to +1.82 D] participated in the study. Five 20-s continuous objective recordings of the accommodative response, measured with an open-view IR autorefractor (Shin-Nippon SRW-5000), were obtained for a variety of open- and closed-loop accommodative demands while simultaneous continuous measurement of heart rate was recorded with a finger-mounted piezo-electric pulse transducer for 5 min. Fast Fourier Transformation of cardiovascular function allowed the absolute and relative power of the autonomic components to be assessed in the frequency-domain, whereas heart period gave an indication of the time-domain response. RESULTS: Increasing closed-loop accommodative demand led to a concurrent increase in heart rate of approximately 2 beats/min for a 4.0 D increase in accommodative demand. The increase was attributable to a reduction in the absolute (p < 0.05) and normalised (p < 0.001) input of the systemic parasympathetic nervous system, and was unaffected by refractive group. The interaction with refractive group failed to reach significance. CONCLUSIONS: For sustained accommodation effort, the data demonstrate covariation between the oculomotor and cardiovascular systems which implies that a near visual task can significantly influence cardiovascular behaviour. Accommodative effort alone, however, is not a sufficient stimulus to induce autonomic differences between refractive groups. The data suggest that both the oculomotor and cardiovascular systems are predominantly attributable to changes in the systemic parasympathetic nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current platform of conventional cardiovascular risk assessments tends to forsake the importance of endothelial function - a key biological mechanism by which cardiovascular risk factors exert their propensity for adverse vascular events. Moreover, the presence and severity of endothelial dysfunction in ‘low-risk’ individuals suggests considerable variability in pre-clinical risk that could potentially be detected well before the onset of disease. The aim of the present thesis was to investigate the presence and impact of retinal vascular dysfunction, as a barometer of endothelial function, in otherwise healthy individuals with one or more cardiovascular risk factors, but low to moderate cardiovascular risk. Systemic circulatory influences on retinal vascular function were also evaluated. The principle sections and findings of this work are: 1. Ageing effect on retinal vascular function • In low-risk individuals, there are age differences in retinal vascular function throughout the entire functional response curve for arteries and veins. Gender differences mainly affect the dilatory phase and are only present in young individuals. 2. Retinal vascular function in healthy individuals with a family history of cardiovascular disease • In low-risk individuals with a family history of cardiovascular disease, impairments in microvascular function at the retinal level correlate with established plasma markers for cardiovascular risk. 3. Ethnic differences in retinal vascular function • When compared to age-matched White Europeans, in low-risk middle-aged South Asians, there are impairments in retinal vascular function that correlate with established cardiovascular risk indicators. 4. Systemic circulatory influences on retinalµvascular function • Systemic antioxidant capacity (redox index) and plasma markers for cardiovascular risk (lipids) influence retinal microvascular function at both arterial and venous levels. 5. Retinal vascular function in individuals with obstructive sleep apnoea: a preliminarystudy • Patients with moderate to severe sleep apnoea exhibit attenuated retinal vascular function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It is well known that sprint interval training (SIT), induces significant increases in peak oxygen uptake (VO2peak) at the group level. However, there have been only a few studies that have addressed the variability of VO2peak response following SIT, and precise mechanism(s) that may explain individual magnitude of response are unknown. Purpose: Therefore, the purpose of this thesis was to: 1) examine the inter-individual variability of the VO2peak response following SIT, 2) to inspect the relationship between changes in both central and peripheral measures and changes in VO2peak, and 3) to assess if peripheral or central adaptations play a role in whether an individual is a high or low responder with respect to VO2peak. Subjects: Twenty-two young, recreationally active males (age: 20.4 1.7 years; weight: 78.4 10.2 kg; VO2peak: 3.7 0.62 L/min) Methods: VO2peak (L/min), peak cardiac output (Qpeak [L/min]), and peak deoxygenated hemoglobin (HHbpeak [mM]) were measured before and after 16 sessions of SIT (Tabata Protocol) over four weeks. Peak a-vO2diff was calculated using a derivation of the Fick equation. Results: Due to a systematic error, HHbpeak could not be used to differentiate between individual responses. There was a large range of VO2peak response from pre to post testing (-4.75 to 32.18% change) and there was a significant difference between the Low Response Group (LRG) (n=8) and the High Response Group (HRG) (n=8) [f(1, 14)= 64.27, p<0.001]. Furthermore, there was no correlation between delta () VO2peak and Qpeak (r=-0.18, p=0.46) for all participants, nor was there an interaction effect between the Low and High Response Groups [f(1,11)=0.572, p=0.47]. Lastly, there was a significant correlation between VO2peak and peak a-vO2diff [r=0.692, p<0.001], and a significant interaction effect with peak a-vO2diff [f(1, 14)= 13.27, p<0.004] when comparing the HRG to the LRG. Conclusions: There was inter-individual variability of VO2peak response following 4 weeks of SIT, but central adaptations did not influence this variation. This suggests that peripheral adaptations may be responsible for VO2peak adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to identify hypertension (HT) in karate competitors (KCs) in high intensity exercise. Values were compared with an exercise control group (EC). The 84 subjects were randomly divided into two groups: KC and EC. Resting blood pressure (BP) was measured the day before and immediately precompetition. A further three measurements were taken postexercise for all subjects at 1-, 2-, and 8- minute intervals. At rest, day one, mean BP of KC was 134/84 ± 3/2 mmHg vs. EC, 124/72 ± 1/2 mmHg and on day 2, was 141/79 ± 3/2 mmHg vs. EC, 125/72 ± 1/2 mmHg, respectively. Eight minutes postcompetition, BP of KCs was 140/77 ± 2/1 mmHg vs. EC 135/75 ± 2/1 mmHg. High blood pressure (HBP) was recorded in 60.5% of KCs on day 2, and essential HT that required medical therapy was subsequently diagnosed in 5% of KCs. Five percent of EC also had HBP, but subsequent medical examination reported normal values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Chronic obstructive pulmonary disease (COPD) is a main risk for morbidity, associated with alterations in systemic inflammation. Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease. However, increase of inflammatory cytokines adversely affects quality of life, alteration in ventilatory and skeletal muscles functions. Moreover, exercise training has many beneficial effects in correction of the adverse effects of COPD. Objective: This study aimed to compare the response of inflammatory cytokines of COPD to aerobic versus resisted exercises. Materials and methods: One hundred COPD diseased patients participated in this study and were randomly included in two groups; the first group received aerobic exercise, whereas the second group received resisted exercise training for 12 weeks. Results: The mean values of TNF-α, Il-2, IL-4, IL-6 and CRP were significantly decreased in both groups. Also; there was a significant difference between both groups at the end of the study with more reduction in patients who received aerobic exercise training. Conclusion: Aerobic exercise is more appropriate than resisted exercise training in modulating inflammatory cytokines level in patients with chronic obstructive pulmonary disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2016-09-27 19:34:16.86