992 resultados para Carbon per cell


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We measured the relationship between CO2-induced seawater acidification, photo-physiological performance and intracellular pH (pHi) in a model cnidarian-dinoflagellate symbiosis - the sea anemone Aiptasia sp. -under ambient (289.94 ± 12.54 µatm), intermediate (687.40 ± 25.10 µatm) and high (1459.92 ± 65.51 µatm) CO2 conditions. These treatments represented current CO2 levels, in addition to CO2 stabilisation scenarios IV and VI provided by the Intergovernmental Panel on Climate Change (IPCC). Anemones were exposed to each treatment for two months and sampled at regular intervals. At each time-point we measured a series of physiological responses: maximum dark-adapted fluorescent yield of PSII (Fv/Fm), gross photosynthetic rate, respiration rate, symbiont population density, and light-adapted pHi of both the dinoflagellate symbiont and isolated host anemone cell. We observed increases in all but one photo-physiological parameter (Pgross:R ratio). At the cellular level, increases in light-adapted symbiont pHi were observed under both intermediate and high CO2 treatments, relative to control conditions (pHi 7.35 and 7.46 versus pHi 7.25, respectively). The response of light-adapted host pHi was more complex, however, with no change observed under the intermediate CO2 treatment, but a 0.3 pH-unit increase under the high CO2 treatment (pHi 7.19 and 7.48, respectively). This difference is likely a result of a disproportionate increase in photosynthesis relative to respiration at the higher CO2 concentration. Our results suggest that, rather than causing cellular acidosis, the addition of CO2 will enhance photosynthetic performance, enabling both the symbiont and host cell to withstand predicted ocean acidification scenarios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phaeocystis globosa (Prymnesiophyceae) is an ecologically dominating phytoplankton species in many areas around the world. It plays an important role in both the global sulfur and carbon cycles, by the production of dimethylsulfide (DMS) and the drawdown of inorganic carbon. Phaeocystis globosa has a polymorphic life cycle and is considered to be a harmful algal bloom (HAB) forming species. All these aspects make this an interesting species to study the effects of increasing carbon dioxide (CO2) concentrations, due to anthropogenic carbon emissions. Here, the combined effects of three different dissolved carbon dioxide concentrations (CO2(aq)) (low: 4 µmol/kg, intermediate: 6-10 µmol/kg and high CO2(aq): 21-24 µmol/kg) and two different light intensities (low light, suboptimal: 80 µmol photons/m**2/s and high light, light saturated: 240 µmol photons/m**2/s) are reported. The experiments demonstrated that the specific growth rate of P. globosa in the high light cultures decreased with increasing CO2(aq) from 1.4 to 1.1 /d in the low and high CO2 cultures, respectively. Concurrently, the photosynthetic efficiency (Fv/Fm) increased with increasing CO2(aq) from 0.56 to 0.66. The different light conditions affected photosynthetic efficiency and cellular chlorophyll a concentrations, both of which were lower in the high light cultures as compared to the low light cultures. These results suggest that in future inorganic carbon enriched oceans, P. globosa will become less competitive and feedback mechanisms to global change may decrease in strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied the interactive effects of pCO2 and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO2 (750 ppmv), and a range of growth light from 30 to 380 µmol photons/m**2/s. Elevated pCO2 significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO2 susceptibility to photoinactivation of photosystem II (sigma i) increased with increasing growth rate, but cells growing under elevated pCO2 showed no dependence between growth rate and sigma i, so under high growth light cells under elevated pCO2 were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO) and PsaC (PSI) protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study has examined the effect of low seawater pH values (induced by an increased CO2 partial pressure) on the rates of photosynthesis, as well as on the carbon budget and carbon translocation in the scleractinian coral species Stylophora pistillata, using a new model based on 13C labelling of the photosynthetic products. Symbiont photosynthesis contributes to a large part of the carbon acquisition in tropical coral species, and it is thus important to know how environmental changes affect this carbon acquisition and allocation. For this purpose, nubbins of S. pistillata were maintained for six months at two pHTs (8.1 and 7.2, by bubbling seawater with CO2). The lowest pH value was used to tackle how seawater pH impacts the carbon budget of a scleractinian coral. Rates of photosynthesis and respiration of the symbiotic association and of isolated symbionts were assessed at each pH. The fate of 13C photosynthates was then followed in the symbionts and the coral host for 48 h. Nubbins maintained at pHT 7.2 presented a lower areal symbiont concentration, and lower areal rates of gross photosynthesis and carbon incorporation compared to nubbins maintained at pHT 8.1. The total carbon acquisition was thus lower under low pH. However, the total percentage of carbon translocated to the host as well as the amount of carbon translocated per symbiont cell were significantly higher under pHT 7.2 than under pHT 8.1 (70% at pHT 7.2 vs. 60% at pHT 8.1), such that the total amount of photosynthetic carbon received by the coral host was equivalent under both pHs (5.5 to 6.1 µg C/cm**2/h). Although the carbon budget of the host was unchanged, symbionts acquired less carbon for their own needs (0.6 compared to 1.8 µg C/cm**2/h), explaining the overall decrease in symbiont concentration at low pH. In the long term, such decrease in symbiont concentration might severely affect the carbon budget of the symbiotic association.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied the effects of elevated CO2 concentration and seawater acidity on inorganic carbon acquisition, photoinhibition and photoprotection as well as growth and respiration in the marine diatom Thalassiosira pseudonana. After having grown under the elevated CO2 level (1000 µatm, pH 7.83) at sub-saturating photosynthetically active radiation (PAR, 75 µmol photons/m**2/s) for 20 generations, photosynthesis and dark respiration of the alga increased by 25% (14.69 ± 2.55 fmol C/cell/h) and by 35% (4.42 ± 0.98 fmol O2/cell/h), respectively, compared to that grown under the ambient CO2 level (390 µatm, pH 8.16), leading to insignificant effects on growth (1.09 ± 0.08 (1/d))v 1.04 ± 0.07 (1/d)). The photosynthetic affinity for CO2 was lowered in the high-CO2 grown cells, reflecting a down-regulation of the CO2 concentrating mechanism (CCM). When exposed to an excessively high level of PAR, photochemical and non-photochemical quenching responded similarly in the low- and high-CO2 grown cells, reflecting that photoinhibition was not influenced by the enriched level of CO2. In T. pseudonana, it appeared that the energy saved due to the down-regulated CCM did not contribute to any additional light stress as previously found in another diatom Phaeodactylum tricornutum, indicating differential physiological responses to ocean acidification between these two diatom species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present dataset is part of an interdisciplinary project carried out on board the RV Southern Surveyor off New South Wales (Australia) from the 15th to the 31st October 2010. The main objective of the research voyage was to evaluate how the East Australian Current (EAC) affects the optical, chemical, physical, and biological water properties of the continental shelf and slope off the NSW coast.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zooplankton samples were taken in five depth strata using a Multinet type Midi, with 50 µm nets. The samples were taken during the second leg only, three times at station 1, two times at station 2 and once at station 3. Zooplankton were identified to species / genus and life-stage, and at least 300 individuals were counted per sample. 10 individuals of each stage / species were measured and the numbers of eggs counted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report primary production of organic matter and organic carbon removal from three subtropical open ocean time-series stations, two located in the Atlantic and one in the Pacific, to quantify the biological components of the oceanic carbon pump. We find that within subtropical gyres, export production varies considerably despite similar phytoplankton biomass and productivity. We provide evidence that the removal of organic carbon is linked to differences in nutrient input into the mixed layer, both from eddy induced mixing and dinitrogen fixation. These findings contribute to our knowledge of the spatial heterogeneity of the subtropical oceans, which make up more than 50% of all ocean area and are thought to spread in the course of CO2- induced global warming.