1000 resultados para Carbon, organic, total, standard deviation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daphnia was collected from five subarctic ponds which differed greatly in their DOC contents and, consequently, their underwater light (UV) climates. Irrespective of which Daphnia species was present, and contrary to expectations, the ponds with the lowest DOC concentrations (highest UV radiation levels) contained Daphnia with the highest eicosapentaenoic acid (EPA) concentrations. In addition, EPA concentrations in these Daphnia generally decreased in concert with seasonally increasing DOC concentrations. Daphnia from three of the ponds was also tested for its tolerance to solar ultraviolet radiation (UVR) with respect to survival. Daphnia pulex from the clear water pond showed, by far, the best UV-tolerance, followed by D. longispina from the moderately humic and D. longispina from the very humic pond. In addition, we measured sublethal parameters related to UV-damage such as the degree to which the gut of Daphnia appeared green (as a measure of their ability to digest algae), and whether their guts appeared damaged. We developed a simple, noninvasive scoring system to quantify the proportion of the gut in which digestive processes were presumably active. This method allowed repeated measurement of the same animals over the course of the experiment. We demonstrated, for the first time, that sublethal damage of the gut precedes mortality caused by exposure to UVR. In a parallel set of experiments we fed UV-exposed and non-exposed algae to UV-exposed and non-exposed daphnids. UVR pretreatment of algae enhanced the negative effects of exposure to natural solar UV-irradiation in Daphnia. These UV-related effects were generally not specific to the species of Daphnia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.