936 resultados para Carbeto de nióbio. Aço ferrítico 15Kh2MFA. Metalurgia do pó.Moagem de alta energia e materiais compósitos
Resumo:
Modificações na composição química e no processamento termomecânico têm sido algumas das várias alternativas estudadas, para melhorar o desempenho de ligas de alumínio tradicionais. Neste trabalho foi modificada a composição de uma liga Al-Mn-Mg do tipo AA 3104, endurecível por deformação, adicionando-se diversos teores de zinco, transformando-a numa liga Al-Mn-Mg(Zn), endurecível por precipitação. O objetivo foi estudar e quantificar os efeitos do zinco sobre o processamento termomecânico e as propriedades mecânicas da liga modificada. Ligas com teores de zinco entre 0,03 a 1,52% foram fundidas e processadas obtendo-se um encruamento semelhante a condição H-19 industrial, denominada rota R. Ligas com teores de zinco entre 1,14 a 2,17% foram fundidas e processadas segundo três diferentes rotas: na rota S, o recozimento da rota R foi substituído por solubilização antes da laminação a frio; nas rotas E3H e E6H, as tiras laminadas a frio foram envelhecidas em dois estágios: 121°C por três horas para as duas rotas, mais três horas para a rota E3H e seis para a rota EH a 163°. A tensão de escoamento (SIGMA IND E) e a resistência à tração (SIGMA IND T) para a rota R aumentaram da ordem de 18% e 19% respectivamente, com o aumento do teor de zinco, enquanto o alongamento (E) permaneceu em torno de 4,5%. As propriedades mecânicas (SIGMA IND E SIGMA T E ) AUMENTARAM EM TORNO DE 25%, 31% E 27%, respectivamente, para a rota S. Considerando concentrações aproximadamente iguais de zinco, não foram verificadas diferenças significativas para (SIGMA E SIGMA T), entre as rotas R E S, no entanto, a rota S apresentou alongamento médio maior que a rota R da ordem 44%. Os menores valores de (SIGMA IND E SIGMA IND T) e os maiores valores de E foram obtidos para a rota E6H.
Resumo:
O sucesso das restaurações metálicas indiretas depende, dentre outros fatores, de uma união eficaz entre a estrutura metálica e o cimento dentário empregados. Sabe-se que os primers para metal atuam com comprovada eficácia na resistência adesiva dos cimentos resinosos às ligas nobres. Entretanto, pouco foi estudado sobre o efeito de tais materiais em ligas não nobres. O propósito deste estudo foi avaliar a eficácia de primers para metal na resistência ao cisalhamento da união entre cimentos resinosos e metais não nobres. Discos (9 mm de diâmetro e 3 mm de altura) foram fundidos em liga de NiCr (n=80) e em titânio comercialmente puro (Ti c.p.) (n=80) e foram incluídos em anel de PVC com resina acrílica quimicamente ativada. As superfícies dos discos foram regularizadas com lixas de carbeto de silício de granulação 320, 400 e 600 e jateadas com partículas de óxido de alumínio de 50 µm. Espécimes de cada metal foram divididos em quatro grupos (n=20). Uma matriz metálica bi-partida (5 mm de diâmetro interno e 2 mm de altura) foi posicionada na superfície do espécime. As áreas adesivas receberam um dos seguintes tratamentos: 1) Panavia F; 2) Alloy Primer e Panavia F; 3) Bistite DC e 4) Metaltite e Bistite DC. Para evitar a exposição dos cimentos à luz, estes foram espatulados e inseridos na matriz dentro de uma câmara de revelação radiográfica. Quarenta minutos após a confecção, os espécimes foram armazenados em água destilada a 37ºC por 24 horas e então termociclados (1.000 ciclos, 5ºC e 55ºC, 30 segundos cada banho). Após a termociclagem, os espécimes foram armazenados novamente nas mesmas condições descritas anteriormente por um período de 24 horas (n=10) ou de 6 meses (n=10) antes do ensaio de cisalhamento em uma máquina de ensaios mecânicos (Material Test System 810).
Resumo:
This study aims to assess the implementation of Lean Six Sigma in the preparation of plates and hot lamination process for a company of aluminum rolled products, to improve the quality, productivity and process efficiency. As a basis for achieving these goals, the DMAIC methodology and various quality tools such as Cause Effect Diagram, Process Flow, SIPOC, Pareto, FMEA and Control Chart were used, trying to propose improvements to processes and increase their efficiency. The results were significant and were the basis for the continuation of a continuous improvement project throughout the factory
Resumo:
The industry produces rolled, starting to and passing through casting forming processes, for example, in the case in question the rolling. A large portion of rolled products are flat, these have specific characteristics during their production and properties after finished that must be analyzed. For this a study of these properties must be made in materials samples, in order to be able to first know the material in question or provide new properties to the material through the process of rolling flat products. In this way is interesting that the students of mechanical engineering have knowledge of rolling trials, and from this can better understand the behavior of rolled. With this purpose the project of a benchtop rolling mill for the rolling of flat is needed, this work is the project of a sizing of one rolling mill non-ferrous materials
Resumo:
Many variables are indirectly involved in the transformation of raw material into a metallurgical industry, such as machine hours, hours of hand labor directly and / or indirect, setup time, etc. This research focuses on the complexity of formulating the cost of metallurgical products, based on a case study, in which one has incurred a large loss on the sale of a product called Punch. The main objective of this work is to define the variables of the cost of members and other metallurgical products, so simplified general, checking what were the failures costing the case studied, in order to help others. The method of formulating cost was determined as recommended by SEBRAE guidance for small businesses. The results showed a loss R$ 13.201,00 in the batch of 15 units of punch. Possible improvements have been identified for reducing the production cost
Resumo:
In our country, the majority of freight and people by road happens municipal, state and federal. Thus, the heavy vehicles like buses and trucks are the main means of transporting people and cargo. This graduate work aims to study the process of manufacturing wheels for trucks, because we can see the lack of literature on the manufacturing process of wheels and also the importance of the processes used to manufacture wheels, such as lamination, stamping, puckering, machining, welding and painting
Resumo:
With the market more and more disputed and negotiations where the customer is the main factor who decides whether the companies have conditions or not to dispute the market, industries must search improvements in products and processes targeting lower costs and better quality. With that in mind, this work will study the actual situation of a line of Tension Leveler, after cold mill process, for aluminum coil, and search new technologies, precisely the Scrap Baller machine, which will raise the quality level and the line’s productivity. It will be analyzed the justifications (reasons) for these new technologies, the history, the involved concepts, the operation, functions, the material that will be tension leveled, the limitations and tech and economic viability in comparison with the actual system. Also it will be taken a brief about the aluminum coil production in Brazil, especially the ones which destiny is aluminum beverage can, and the recycling process, that is very well done in Brazil, worldwide leader in aluminum recycling
Resumo:
The mechanical forming processes are the main means of transformation. Among all processes, the most used is rolling and broken down into flat and non-flat products. In the flat products are classified plates, and products no plans bars and profiles. Thus laminating products, mostly, are the raw materials for other processes of transformation, as stamping, forging, machining, bending and more. This work has focused on non-flat products, classified as bars and rods, watching a key point in the proceedings that is the product quality. Here is demonstrated through metallographic analysis of steel bars, hot-rolled, the characteristics of surface cracks in these bars
Resumo:
The study of ceramic materials is constantly evolving, especially in research related to advanced ceramics. Once these have many applications, this paper relates to synthesis by solid state reaction of calcium copper titanate (CCTO) ceramic material means doping with strontium. The powders were characterized using thermal analysis techniques such as TG (thermogravimetry), DTA (differencial thermal analysis), dilatometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compositions have submitted weight loss at around 6% with respect to carbonates used, and was attributed a temperature of 950° C to perform the calcination according to thermogravimetric analysis. After the process of calcination and milling, the particles presented approximately spherical shapes and high percentages of substitution Ca2+ with Sr2+ was evident by the presence of necks between to particles due to the milling calcination. Analyses with Energy Dispersive Spectroscopy (EDS) showed stoichiometries in different samples very similar to the theoretical stoichiometry
Resumo:
The plastic deformation is widely used in the metallurgical market due to its positive factors such as low prices and high speed production. Forming process products are obtained in high quality, both surface quality and mechanical properties. Friction is an importante factor in metal forming. Friction study in metal forming can be accomplished indirectly, such as the ring test of friction. Two samples of different materials being mild steel and copper alloy were used. The results showed the influence of friction in the flow behavior of the deformation of the second phase, as evidenced by standard metallography. It is observed that in the outer regions of the ring, plastic deformation occured in the radial direction. In the central region of the disc deformation occured in the direction of compression and the inner region of the ring flux lines showed a significant deformation in the radial direction towards the center of the ring
Resumo:
The research involving new materials has always been considered as a differential in the development of a technology company. This occurred naturally since ancient times, often motivated by reasons of a certain age, where the most common material used was also the name of your time and may be cited as an example the Bronze Age, and later was the Iron. Currently, the use of firearms are they used in resolving conflicts between countries, or a more equivocal, as an instrument of social banditry make innovations in the area of shielding welcome, whether for personal use, in the form of vests or vehicle such as cars, tanks and even aircraft. In this context, is a Silicon Carbide Ceramic, with low density and high hardness. Thus, the aim of this study is the evaluation and comparison of these materials, seeking to improve their properties by means of additives such as boron and silicon metal and amorphous YAG. For this work, the specimens were pre-shaped by means of uniaxial later to be referred for isostatic pressing and sintering. The maximum percentage for each additive was 5%, except for the YAG whose percentage was 8.2% (mass percentage). All compositions were subjected to the same tests (x-ray diffraction, apparent density, optical microscopy, Vickers hardness, scanning electron Microscopita), so that one could draw a comparison between the materials under study, samples that showed better mechanical properties and micro structural, related here by hardness testing and microscopy (optical and SEM) were the silicon carbide doped with YAG and alumina samples, demonstrating the potential of these materials for ballistic protection. Other compositions have high porosity, which is highly undesirable, since in order to harmful influences on the mechanical properties discussed below
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Introduction: Currently, there are many questions regarding the cleaning methods seeking greater efficiency and less loss of burs. Aim: the aim of this study was to evaluate the influence of cleaning methods on the cutting efficiency and morphological characteristics of stainless steel burs tungsten carbide (carbide). Materials and method: Thirty burs were divided into five groups (n = 5) according with the cleaning method: L1 - steel brush, L2 - nylon brush, L3 - ultrasound + distilled water, L4 - ultrasound + descaling solution and L5 - no cleaning method (control). The burs were used for the cutting of bovine enamel during six periods of 12 minutes each. After each period, the burs were cleaned (except L5 ) following the protocol established for each group. The cutting efficiency was determined by mass loss and morphological characteristics. Result: The average amount of wear after 72 minutes of use were L1 = 0.3558 g; L2 = 0.4275 g; L3 = 0.4652 g; L4 = 0.4396 g e L5 = 0.4854 g; significant differences in the time of use (p < 0.001) and cleaning method (p < 0.001). The L1 group showed the worst performance. Regardless of the experimental group, morphological analysis revealed alterations in the cutting blades soon after the first 12 minutes, being L1 the most affected group. Conclusion: The cleaning with wire brush was the most damaging method to the cutting efficiency and to the morphology of carbide burs.
Resumo:
Pós-graduação em Química - IBILCE