305 resultados para Capitata
Resumo:
Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.
Resumo:
This paper describes and illustrates early to middle Eocene benthic foraminifers from northwest Atlantic Site 605, on the continental rise off New Jersey. Benthic foraminiferal faunas are dominated by Bulitnina spp., Nuttallides truempyi, Lenticulina spp., and Cibicidoides spp. Other common taxa include Oridorsalis spp., Gyroidinoides spp., uniserial taxa, arenaceous taxa, and Globocassidulina subglobosa. Together, these taxa usually make up 70% or more of the total fauna. The assemblages are interpreted as indicating a lower bathyal environment of deposition during the Eocene at Site 605. This is corroborated by an independent water depth estimate through backstripping, indicating a water depth for the beginning of the Eocene to late middle Eocene of approximately 2300 to 2000 m.
Resumo:
Reliable information of past vegetation changes are important to project future changes, especially for areas undergoing rapid transitioning such as the boreal treeline. The application of detailed sedDNA records has the potential to enhance our understanding of vegetation changes gained mainly from pollen studies of lake sediments. This study investigates sedDNA and pollen records from 31 lakes along a gradient of increasing larch forest cover in northern Siberia (Taymyr Peninsula) and compares them with vegetation field surveys within the lake's catchment. With respect to vegetation richness, sedDNA recorded 114 taxa, about half of them to species level, while pollen analyses identified 43 pollen taxa. Both approaches exceed the 31 taxa revealed by vegetation field surveys of 400 m**2 plots. From north to south, Larix percentages increase, as is consistently recorded by all three methods. Furthermore, tundra sites are separated from forested sites in the plots of the principal component analyses. Comparison of ordination results by Procrustes and Protest analyses yields a significant fit among all compared pairs of records. Despite the overall comparability of sedDNA and pollen analyses certain idiosyncrasies in the compositional signal are observed, such as high percentages of Alnus and Betula in all pollen spectra and high percentages of Salix in all sedDNA spectra. In conclusion, our results from the treeline show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e. presence/absence of certain vegetation taxa in the direct vicinity of the lake) and perform as good as pollen in tracing regional vegetation composition.
Resumo:
Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.