922 resultados para Candida Albicans
Resumo:
The production of hyaluronidase and chondroitin sulphatase by Candida albicans, Candida tropicalis, Candida parapsilosis, Candida guilliermondii and Candida krusei was investigated using a complex culture medium (Sabouraud glucose agar) and a chemically defined medium. Among the 63 C. albicans isolates tested, 61 (97.8%) were found to be hyaluronidase and chondroitin sulphatase producers; one isolate produced only chondroitin sulphatase and one other was unable to produce either enzyme. The second major hyaluronidase and chondroitin sulphatase producing species was C. tropicalis followed by C. guilliermondii, C. parapsilosis and C. krusei. Among the C. albicans isolates tested no relation between the source of isolation and the amount of hyaluronidase and chondroitin sulphatase produced was found.
Resumo:
We examined the prevalence and the in vitro susceptibility to antifungal drugs of Candida spp isolated from clinical specimens at our university hospital in São Paulo, Brazil. Among 6,417 samples studied, positive cultures, were obtained from 222 (3.5%) most of them (68%) from the pediatric unit and nursery. Candida albicans and Candida parapsilosis were the most frequent species and the susceptibility patterns of a panel of 130 isolates to amphotericin B, ketoconazole and fluconazole. showed that the order of antifungal efficacy was amphotericin B > ketoconazole > fluconazole.
Resumo:
Propolis is a resinous material collected by bees from the buds or other parts of plants. It is known for its biological properties, having antibacterial, antifungal and healing properties. The antifungal activity of propolis was studied in sensitivity tests on 80 strains of Candida yeasts: 20 strains of Candida albicans, 20 strains of Candida tropicalis, 20 strains of Candida krusei and 15 strains of Candida guilliermondii. The yeasts showed a clear antifungal activity with the following order of sensitivity: C. albicans > C. tropicalis > C. krusei > C. guilliermondii. Patients with full dentures who used a hydroalcoholic propolis extract showed a decrease in the number of Candida.
Resumo:
PCR was used to amplify a targeted region of the ribosomal DNA of 76 Candida spp. isolates from immunocompromised and seriously diseased patients. Thirty-seven strains isolated from different anatomical sites of 11 patients infected with HIV (Vitória, ES, Brazil), 26 isolates from patients under treatment at Odilon Behrens Hospital and 13 isolates from skin and urine samples from São Marcos Clinical Analysis Laboratory (Belo Horizonte, Brazil) were scored. Fragments of rDNA were amplified using primer pairs ITS1-ITS4, for the amplification of ITS1 and ITS2 regions, including the gene for the 5.8s subunit. Amplification resulted in fragments ranging in size from 350 to 950 bp. Amplicons were digested with eight restriction enzymes. A pattern of species-specificity among the different medically important Candida species could be identified following restriction digestion of the PCR products. Candida albicans was the species most frequently observed, except for the group of newborns under treatment at the Odilon Behrens Hospital and for the isolates from the clinical analysis laboratory. C. parapsilosis was the species most frequently observed in these two groups.
Resumo:
Antifungal activity of natural products has been tested by adapting methods designed for synthetic drugs. In this study, two methods for the determination of antifungal activity of natural products, agar diffusion and broth microdilution, the CLSI reference methods for synthetic drugs, are compared and discussed. The microdilution method was more sensitive. The minimal inhibitory concentrations (MIC) of crude extracts, fractions and pure substances from different species of the plant families Piperaceae, Rubiaceae, Clusiaceae, Fabaceae and Lauraceae, from the Biota project, were determined. Antifungal activities against Candida albicans, C.krusei, C.parapsilosis and Cryptococcus neoformans were produced by several samples.
Resumo:
Aim: Several typing methods for Candida spp. have been suggested in the literature in order to distinguish isolates for studies about the virulence or infection routes of these microorganisms and, in particular, for epidemiological purposes. The aim of this study was to establish a comparison between the phenotypic profile of oral Candida isolates from periodontitis patients and control individuals. Methods: The morphotyping and biotyping of 35 C. albicans isolates obtained from chronic periodontitis patients and 48 isolates from control individuals were performed. For morphotyping, the isolates were plated on malt extract agar and incubated for 10 days. Sixteen different morphotypes were observed for C. albicans, the most frequently observed being 0000 and 0001. Results: Biotype 0000 (complete absence of fringe) was most prevalent among the isolates obtained from periodontitis patients compared to those from control individuals, with statistical significance. Biotyping revealed 5 different biotypes with higher prevalence of the biotype 357 among the isolates from control and periodontitis groups. Conclusions: The results obtained by biotyping of the isolates did not permit to differentiate a characteristic model related to periodontal disease, whilst the morphotype 0000 was most frequently isolated from periodontitis patients.
Resumo:
Background. Species identification and antifungal susceptibility tests were carried out on 212 Candida isolates obtained from bloodstream infections, urinary tract infections and dialysis-associated peritonitis, from cases attended at a Brazilian public tertiary hospital from January 1998 to January 2005. Findings. Candida albicans represented 33% of the isolates, Candida parapsilosis 31.1%, Candida tropicalis 17.9%,Candida glabrata 11.8%, and others species 6.2%. In blood culture, C. parapsilosis was the most frequently encountered species (48%). The resistance levels to the antifungal azoles were relatively low for the several species, except for C. tropicalis and C. glabrata. Amphotericin B resistance was observed in 1 isolate of C. parapsilosis. Conclusions. The species distribution and antifungal susceptibility herein observed presented several epidemiological features common to other tertiary hospitals in Latin American countries. It also exhibited some peculiarity, such as a very high frequency of C. parapsilosis both in bloodstream infections and dialysis-associated peritonitis. C. albicans also occurred in an important number of case infections, in all evaluated clinical sources. C. glabrata presented a high proportion of resistant isolates. The data emphasize the necessity to carry out the correct species identification accompanied by the susceptibility tests in all tertiary hospitals. © 2010 Bagagli et al; licensee BioMed Central Ltd.
Resumo:
Objectives: Ozone has been used as an alternative method for the decontamination of water, food, equipment and instruments. The objective of this study was to evaluate the antimicrobial effects of ozonated water on the sanitization of dental instruments that were contaminated by Escherichia coli, Staphylococcus aureus, Candida albicans and the spores of Bacillus atrophaeus. Methods: A total of one hundred and twenty standardized samples of diamond dental burs were experimentally contaminated with E. coli (ATCC 25922), S. aureus (ATCC 6538) and C. albicans (ATCC 18804) and the spores of B. atrophaeus (ATCC 6633) for 30min. After the contamination, the samples were exposed to ozonated water (10mg/L O3) for 10 or 30min. The control group was composed of samples that were exposed to distilled water for 30min. After the exposure to the ozonated water, 0.1mL aliquots were seeded onto BHI agar to count the colony-forming units per milliliter (CFU/mL) of E. coli, S. aureus, and B. atrophaeus. Sabouraud dextrose agar was used to count the CFU/mL of C. albicans. The results were subjected to an analysis of variance and the Tukey test. Results: For all of the microorganisms studied, the ozonated water reduced the number of CFU/mL after 10 and 30. min of sanitization, and this microbial reduction was dependent on the duration of the exposure to the ozonated water. E. coli exhibited the greatest reduction in CFU/mL (2.72-3.78. log) followed by S. aureus (2.14-3.19. log), C. albicans (1.44-2.14. log) and the spores of B. atrophaeus (1.01-1.98. log). Conclusion: The ozonated water was effective in reducing the CFU of E. coli, S. aureus, C. albicans and B. atrophaeus spores, suggesting that ozonated water can be used for the sanitization of dental instruments. © 2012 King Saud Bin Abdulaziz University for Health Sciences.
Resumo:
The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. Candida species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of Candida species to form drugresistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options. © 2013 SGM.
Resumo:
Objectives: The aim of this study was to evaluate the effects of pre-irradiation time (PIT) on curcumin (Cur)-mediated photodynamic therapy (PDT) against planktonic and biofilm cultures of reference strains of Candida albicans, Candida glabrata and Candida dubliniensis. Materials and methods: Suspensions and biofilms of Candida species were maintained in contact with different concentrations of Cur for time intervals of 1, 5, 10 and 20 min before irradiation and LED (light emitting diode) activation. Additional samples were treated only with Cur, without illumination, or only with light, without Cur. Control samples received neither light nor Cur. After PDT, suspensions were plated on Sabouraud Dextrose Agar, while biofilm results were obtained using the XTT-salt reduction method. Confocal Laser Scanning Microscopy (CLSM) observations were performed to supply a better understanding of Cur penetration through the biofilms after 5 and 20 min of contact with the cultures. Results: Different PITs showed no statistical differences in Cur-mediated PDT of Candida spp. cell suspensions. There was complete inactivation of the three Candida species with the association of 20.0 μM Cur after 5, 10 and 20 min of PIT. Biofilm cultures showed significant reduction in cell viability after PDT. In general, the three Candida species evaluated in this study suffered higher reductions in cell viability with the association of 40.0 μM Cur and 20 min of PIT. Additionally, CLSM observations showed different intensities of fluorescence emissions after 5 and 20 min of incubation. Conclusion: Photoinactivation of planktonic cultures was not PIT-dependent. PIT-dependence of the biofilm cultures differed among the species evaluated. Also, CLSM observations confirmed the need of higher time intervals for the Cur to penetrate biofilm structures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
In healthy individuals, Candida species are considered commensal yeasts of the oral cavity. However, these microorganisms can also act as opportunist pathogens, particularly the so-called non-albicans Candida species that are increasingly recognized as important agents of human infection. Several surveys have documented increased rates of C. glabrata, C. tropicalis, C. guilliermondii, C. dubliniensis, C. parapsilosis, and C. krusei in local and systemic fungal infections. Some of these species are resistant to antifungal agents. Consequently, rapid and correct identification of species can play an important role in the management of candidiasis. Conventional methods for identification of Candida species are based on morphological and physiological attributes. However, accurate identification of all isolates from clinical samples is often complex and time-consuming. Hence, several manual and automated rapid commercial systems for identifying these organisms have been developed, some of which may have significant sensitivity issues. To overcome these limitations, newer molecular typing techniques have been developed that allow accurate and rapid identification of Candida species. This study reviewed the current state of identification methods for yeasts, particularly Candida species. © 2013 John Wiley & Sons A/S.
Resumo:
Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a coiled coil structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus. © 2013 Springer-Verlag Wien.
Resumo:
In addition to the bio-guided investigation of the antifungal activity of Plinia cauliflora leaves against different Candida species, the major aim of the present study was the search for targets on the fungal cell. The most active antifungal fraction was purified by chromatography and characterized by NMR and mass spectrometry. The antifungal activity was evaluated against five Candida strains according to referenced guidelines. Cytotoxicity against fibroblast cells was determined. The likely targets of Candida albicans cells were assessed through interactions with ergosterol and cell wall composition, porosity and architecture. The chemical major component within the most active antifungal fraction of P. cauliflora leaves identified was the hydrolysable tannin casuarinin. The cytotoxic concentration was higher than the antifungal one. The first indication of plant target on cellular integrity was suggested by the antifungal activity ameliorated when using an osmotic support. The most important target for the tannin fraction studied was suggested by ultrastructural analysis of yeast cell walls revealing a denser mannan outer layer and wall porosity reduced. It is possible to imply that P. cauliflora targeted the C. albicans cell wall inducing some changes in the architecture, notably the outer glycoprotein layer, affecting the cell wall porosity without alteration of the polysaccharide or protein level. © 2013 by the authors.
Resumo:
This study evaluated the photodynamic inactivation (PDI) mediated by Photodithazine® (PDZ) against 15 clinical isolates of Candida albicans, Candida glabrata and Candida tropicalis. Each isolate, in planktonic and biofilm form, was exposed to PDI by assessing a range of PDZ concentrations and light emitting diode fluences. Cell survival of the planktonic suspensions was determined by colony forming units (CFU ml-1). The antifungal effects of PDI against biofilms were evaluated by CFU ml-1 and metabolic assay. Data were analyzed by non-parametric tests (α = 0.05). Regardless of the species, PDI promoted a significant viability reduction of planktonic yeasts. The highest reduction in cell viability of the biofilms was equivalent to 0.9 log10 (CFU ml-1) for C. albicans, while 1.4 and 1.5 log10 reductions were obtained for C. tropicalis and C. glabrata, respectively. PDI reduced the metabolic activity of biofilms by 62.1, 76.0, and 76.9% for C. albicans, C. tropicalis, and C. glabrata, respectively. PDZ-mediated PDI promoted significant reduction in the viability of Candida isolates. © 2013 Taylor & Francis.
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR