922 resultados para CRYSTALLINE TELLURIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preliminary work is reported on 2-D and 3-D microstructures written directly with a Yb:YAG 1026 nm femtosecond (fs) laser on bulk chemical vapour deposition (CVD) single-crystalline diamond. Smooth graphitic lines and other structures were written on the surface of a CVD diamond sample with a thickness of 0.7mm under low laser fluences. This capability opens up the opportunity for making electronic devices and micro-electromechanical structures on diamond substrates. The fabrication process was optimised through testing a range of laser energies at a 100 kHz repetition rate with sub-500fs pulses. These graphitic lines and structures have been characterised using optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Using these analysis techniques, the formation of sp2 and sp3 bonds is explored and the ratio between sp2 and sp3 bonds after fs laser patterning is quantified. We present the early findings from this study and characterise the relationship between the graphitic line formation and the different fs laser exposure conditions. © 2012 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘De Vries-like’ smectic liquid crystals exhibit low layer contraction of approximately 1% on transitions from the SmA to the SmC phase. These materials have received considerable attention as potential solutions for problems affecting liquid crystal displays using surface-stabilized ferroelectric liquid crystals (SSFLC). In SSFLCs, layer contraction of 710% is normally observed during the SmA to SmC phase transition. A study by the Lemieux group has shown that liquid crystals with nanosegregating carbosilane segments exhibit enhanced ‘de Vries-like’ properties through the formation of smectic layers and by lengthening the nanosegregating carbosilane end-groups from monocarbosilane to tricarbosilane. This observed enhancement is assumed to be due to an increase in the cross-section of the free volume in the hydrocarbon sub-layer. To test this hypothesis, it is assumed that dimers with a tricarbosilane linking group have smaller cross-sections on time average. In his thesis, this hypothesis is tested through the characterization of new liquid crystalline monomers (QL39-n) and dimers (QL40-n) with 2-phenylpyrimidine cores and tricarbosilane end-groups and spacers, respectively. The thesis describes the synthesis of two homologous series of liquid crystals and their characterization using a variety of techniques, including polarized optical microscopy, differential scanning calorimetry and X-ray diffraction. The results show that the monomers QL39-n form a tilted SmC phase only, whereas the dimers QL40-n form an orthogonal SmA phase. These results are discussed in the context of our hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the SNO+ neutrinoless double beta decay search, various backgrounds, ranging from impurities present naturally to those produced cosmogenically, must be understood and reduced. Cosmogenic backgrounds are particularly difficult to reduce as they are continually regenerated while exposed to high energy cosmic rays. To reduce these cosmogenics as much as possible the tellurium used for the neutrinoless double beta decay search will be purified underground. An analysis of the purification factors achievable for insoluble cosmogenic impurities found a reduction factor of $>$20.4 at 50\% C.L.. During the purification process the tellurium will come into contact with ultra pure water and nitric acid. These liquids both carry some cosmogenic impurities with them that could be potentially transferred to the tellurium. A conservative limit is set at $<$18 events in the SNO+ region of interest (ROI) per year as a result of contaminants from these liquids. In addition to cosmogenics brought underground, muons can produce radioactive isotopes while the tellurium is stored underground. A study on the rate at which muons produce these backgrounds finds an additional 1 event per year. In order to load the tellurium into the detector, it will be combined with 1,2-butanediol to form an organometallic complex. The complex was found to have minimal effect on the SNO+ acrylic vessel for 154 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block copolymers of poly(lactide) and poly(carbonate) were synthetized in three different compositions and characterized by 1H-NMR and ATR analyses. The compatibilization effect of this copolymers on 80/20 (w/w%) PLA/PCL blend was evaluated. SEM micrographs show that all the blends exhibit the typical sea-island morphology characteristic of immiscible blends with PCL finely dispersed in droplets on a PLA matrix. Upon the addiction of the copolymers a reduction on PCL droplets size is observable. At the same time, a Tg depression of the PLA phase is detected when the copolymers are added in the blend. These results indicate that these copolymers are effective as compatibilizers. The copolymer that acts as the best compatibilizer is the one characterized by the same amount of PLA and PC as repeating units. As result, in the blend containing this copolymer PLA phase exhibits the highest spherulitic growth rate. An analyses on PLA phase crystallization behaviour from the glassy state within the blends was evaluated by DSC experiments. Isothermal cold crystallization of the PLA phase is enhanced up an order of magnitude upon the blending with PCL. Annealing experiments demonstrated that the crystallization of the PCL phase induces the formation of active nuclei in PLA when cooled above cooled below Tg. When the crystallization rate of PCL is retarded, a reduction on PLA nucleation is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation covers two separate topics in statistical physics. The first part of the dissertation focuses on computational methods of obtaining the free energies (or partition functions) of crystalline solids. We describe a method to compute the Helmholtz free energy of a crystalline solid by direct evaluation of the partition function. In the many-dimensional conformation space of all possible arrangements of N particles inside a periodic box, the energy landscape consists of localized islands corresponding to different solid phases. Calculating the partition function for a specific phase involves integrating over the corresponding island. Introducing a natural order parameter that quantifies the net displacement of particles from lattices sites, we write the partition function in terms of a one-dimensional integral along the order parameter, and evaluate this integral using umbrella sampling. We validate the method by computing free energies of both face-centered cubic (FCC) and hexagonal close-packed (HCP) hard sphere crystals with a precision of $10^{-5}k_BT$ per particle. In developing the numerical method, we find several scaling properties of crystalline solids in the thermodynamic limit. Using these scaling properties, we derive an explicit asymptotic formula for the free energy per particle in the thermodynamic limit. In addition, we describe several changes of coordinates that can be used to separate internal degrees of freedom from external, translational degrees of freedom. The second part of the dissertation focuses on engineering idealized physical devices that work as Maxwell's demon. We describe two autonomous mechanical devices that extract energy from a single heat bath and convert it into work, while writing information onto memory registers. Additionally, both devices can operate as Landauer's eraser, namely they can erase information from a memory register, while energy is dissipated into the heat bath. The phase diagrams and the efficiencies of the two models are solved and analyzed. These two models provide concrete physical illustrations of the thermodynamic consequences of information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature.