989 resultados para CHROMOSOMES
Resumo:
Typical orofacial clefts (OFCs) comprise cleft lip, cleft palate and cleft lip and palate. The complex etiology has been postulated to involve chromosome rearrangements, gene mutations and environmental factors. A group of genes including IRF6, FOXE1, GLI2, MSX2, SKI, SATB2, MSX1 and FGF has been implicated in the etiology of OFCs. Recently, the role of the copy number variations (CNVs) has been studied in genetic defects and diseases. CNVs act by modifying gene expression, disrupting gene sequence or altering gene dosage. The aims of this study were to screen the above-mentioned genes and to investigate CNVs in patients with OFCs. The sample was composed of 23 unrelated individuals who were grouped according to phenotype (associated with other anomalies or isolated) and familial recurrence. New sequence variants in GLI2, MSX1 and FGF8 were detected in patients, but not in their parents, as well as in 200 control chromosomes, indicating that these were rare variants. CNV screening identified new genes that can influence OFC pathogenesis, particularly highlighting TCEB3 and KIF7, that could be further analyzed. The findings of the present study suggest that the mechanism underlying CNV associated with sequence variants may play a role in the etiology of OFC.
Resumo:
Chromosome numbers of 11 South-Brazilian species of Adesmia were determined. The cytological preparations were obtained by squashing cells of root tips, using the acetic-orcein method. The chromosome number for all the species studied was 2n=20, excepting A. incana var. incana with 2n=ca.40. The counts are new for nine species, and the other two agree with the literature. It is suggested x=10 as the basic number for the genus. Up to the present only four species were cited as polyploid.
Resumo:
The authors describe a family with three members affected by glioblastoma. The proband patient, a 7 year-old girl, developed a rare complication, a pulmonary metastasis. Chromosomal analysis of her peripheral blood lymphocytes showed a normal karyotype (46, XX), without structural abnormalities. Cytogenetic study of the tumor cells disclosed several abnormalities: 46, XX, 7q - / 46, XX, -2, 4p-, 7p-, +15/ 46, XX. Some aspects about genetics of glial neoplasms are discussed.
Resumo:
The karyotype of Amphisbaena ridleyi, an endemic species of the archipelago of Fernando de Noronha, in State of Pernambuco, Brazil, is described after conventional staining, Ag-NOR impregnation and fluorescence in situ hybridization (FISH) with a telomeric probe. The diploid number is 46, with nine pairs of macrochromosomes (three metacentrics, four subtelocentrics and two acrocentrics) and 14 pairs of microchromosomes. The Ag-NOR is located in the telomeric region of the long arm of metacentric chromosome 2 and FISH revealed signals only in the telomeric region of all chromosomes. Further cytogenetic data on other amphisbaenians as well as a robust phylogenetic hypothesis of this clade is needed in order to understand the evolutionary changes on amphisbaenian karyotypes.
Resumo:
Four populations of Astyanax hastatus Myers 1928 from the Guapimirim River basin (Rio de Janeiro State) were analyzed and three distinct cytotypes identified. These cytotypes presented 2n = 50 chromosomes, with 4M+8SM+10ST+28A (Cytotype A), 8M+10SM+14ST+18A (Cytotype B), 6M+8SM+4ST+32A (Cytotype C) and scanty heterochromatin, mainly located throughout pericentromeric regions of several chromosomal pairs. No homologies with the As-51 satellite DNA were observed in the three cytotypes, although all of them presented multiple 18S rDNA sites, as detected by both silver nitrate staining and FISH (fluorescent in situ hybridization). The application of the term "species complex" in Astyanax is discussed from a cytotaxonomic viewpoint.
Resumo:
Chromosome microdissection is a technique in which whole chromosomes or chromosomal segments are dissected under an inverted microscope yielding chromosome-specific sequences. Several protocol modifications introduced during the past 15 years reduced the number of chromosomes required for most applications. This is of particular interest to fish molecular cytogenetics, since most species present highly uniform karyotypes which make impossible the collection of multiple copies of the same chromosome. Probes developed in this manner can be used to investigate chromosome homologies in closely related species. Here we describe a protocol recently used in the gymnotiform species group Eigenmannia and review the major steps involved in the generation of these markers focusing on protocol modifications aiming to reduce the number of required chromosomes.
Resumo:
A karyotype analysis of the electric eel, Electrophorus electricus (Teleostei, Gymnotiformes), a strongly electric fish from northern South America, is presented. Two female specimens were analyzed, one from the Amazon River and one from the Araguaia River. The specimens had a chromosomal number of 2n = 52 (42M-SM + 10A). C-bands were present in a centromeric and pericentromeric position on part of the chromosomes; some interstitial C-bands were also present. Heteromorphic nucleolus organizer regions (NORs) were detected in two chromosome pairs of the specimen from the Amazon River. The chromosome number and karyotype characteristics are similar to those of other Gymnotidae species. The genera Electrophorus and Gymnotus are positioned as the basal lineages in the Gymnotiformes phylogeny.
Resumo:
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA3) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO3 staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.
Resumo:
With the great development of the gestational studies in all of the species, we noticed the necessity of adaptations of these techniques for prenatal diagnosis in dogs. Based on this, we studied the feasibility of chorion biopsy guided by ultrasound. Our results demonstrated accuracy on the sex determination being 2 males and 12 females, as well as it would be possible to identify chromosome alteration due to the quality of samplings. Sex determination was accomplished with the identification of Y gene chromosomes in PCR technique. After the collection, fragments were prepared for light microscopy studies and revealed fetal chorion tissue, blood colloid and erythrocyte. In the whole material we found hemosiderin impregnations due to the hemolysis and to the residue of blood of the placental marginal hematomes. The submitted female dogs to this technique demonstrated normal puppy births without death.
Resumo:
Cerradomy's is a monophyletic genus that includes four known species, Cerradomys subflavus, C maracajuensis, C. marinhus, and C. scotti, distributed throughout the open vegetation belt across South America, from northeastern Brazil to southeastern Bolivia, and from eastern to northwestern Paraguay. We revised the status of the species currently assigned to this genus by analyzing skins, skulls, karyotypes, and cytochrome b DNA sequences. We also described two novel species, one distributed in the Brazilian states of Minas Gerais, Bahia, and Sergipe, and the other in the states of Paraiba, Pernambuco, Piaui, Ceara, and Maranhao. Molecular analysis suggested the following phylogenetics arrangement: (((C. subflavus-C. sp.n.2) C. sp.n.1) C scotti)(C. marinhus-C. maracajuensis)). Apparently, both novel species inhabit the Caatinga domain and penetrated the coastal Atlantic rainforest, differing from the remaining congeneric species that are typical open-area inhabitants.
Resumo:
Ring chromosomes are often associated with abnormal phenotypes due to loss of genomic material and also because of ring instability at mitosis after sister chromatid exchange events. We investigated ring chromosome instability in six patients with ring chromosomes 4, 14, 15, and 18 by examining 48- and 72-h lymphocyte cultures at the first, second and subsequent cell divisions after bromodeoxyuridine incorporation. Although most cells from all patients showed only one monocentric ring chromosome, ring chromosome loss and secondary aberrations were observed both in 48-and 72-h lymphocyte cultures and in metaphase cells of the different cell generations. We found no clear-cut correlation between ring size and ring instability; we also did not find differences between apparently complete rings and rings with genetic material loss. The cytogenetic findings revealed secondary aberrations in all ring chromosome patients. We concluded that cells with ring chromosome instability can multiply and survive in vivo, and that they can influence the patient's phenotype.
Resumo:
Background: Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated with enhanced susceptibility to several diseases. Results: In this work, we applied the same method in 288 and 470 chromosomes from Gabonese and European adults, respectively, and found three new haplotypes in the last group. We propose a phylogenetic nomenclature to standardize MBL2 studies and found two major phylogenetic branches due to six strongly linked polymorphisms associated with high MBL production. They presented high Fst values and were imbedded in regions with high nucleotide diversity and significant Tajima's D values. Compared to others using small sample sizes and unphased genotypic data, we found differences in haplotyping, frequency estimation, Fu and Li's D* and Fst results. Conclusion: Using extensive testing for selective neutrality, we confirmed that stochastic evolutionary factors have had a major role in shaping this polymorphic gene worldwide.
Resumo:
Background: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (Jose-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.
Resumo:
The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naive cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies neurogenesis in vitro.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.