972 resultados para CENTRAL NERVOUS-SYSTEM
Resumo:
BACKGROUND: Preoperative central neurologic deficits in the context of acute type A dissection are a complex comorbidity and difficult to handle. The aim this study was to analyze this subgroup of patients by comparing them with neurologically asymptomatic patients with type A dissection. Results may help the surgeon in preoperative risk assessment and thereby aid in the decision-making process. METHODS: We reviewed the data of patients admitted for acute type A dissection during the period from 1999 to 2010. Associated risk factors, time to surgery from admission, extension of the dissection, localization of central nervous ischemic lesions, and the influence of perioperative brain protective strategies were analyzed in a comparison of preoperative neurologically deficient to nondeficient patients. RESULTS: Forty-seven (24.5%) of a total of 192 patients had new-onset central neurologic symptoms prior to surgery. Concomitant myocardial infarction (OR 4.9, 95% CI 1.6-15.3, P = 0.006), renal failure (OR 5.9, 95% CI 1.1-32.8, P = 0.04), dissected carotid arteries (OR 9.2, 95% CI 2.4-34.7, P = 0.001), and late admission to surgery at >6 hours after symptom onset (OR 2.7, 95% CI 1.1-6.8, P = 0.04) were observed more frequently in neurologically deficient patients. These patients had a higher 30-day in-hospital mortality on univariate analysis (P = 0.01) and a higher rate of new postoperative neurologic deficits (OR 9.2, 95% CI 2.4-34.7, P = 0.02). Neurologic survivors had an equal hospital stay, and 67% of them had improved symptoms. CONCLUSIONS: The predominance of neurologic symptoms at admission may be responsible for an initial misdiagnosis. The concurrent central nervous system ischemia and myocardial infarction explains a higher mortality rate and a more extensive "character" of the disease. Neurologically deficient patients are at higher risk of developing new postoperative neurologic symptoms, but prognosis for the neurologic evolution of survivors is generally favorable.
Resumo:
Recently, we proposed the hypothesis according to wich the central hypotensive effect of clonidine and related substances could be related to an action upon specific receptors, requiring the imidazoline or imidazoline-like structures, rather than alpha2-adrenoceptors. Since then, direct evidences have been accumulated to confirm the existence of a population of imidazoline specific binding sites in the brainstem of animals and man, more precisely in the Nucleus Reticularis Lateralis (NRL) region of the ventrolateral medulla (VLM), site of the antihypertensive action of clonidine. The purification of the putative endogenous ligand of the imidazoline receptors - named endazoline - is currently being attempted from human brain extracts. This new concept might at last lead to the expected dissociation of the pharmacological mechanisms involved, on the one hand, in the therapeutic antihypertensive effect, and on the other, in their major side-effect, which is sedation. In fact, it has been recently confirmed that hypotension is mediated by the activation of imidazoline preferring receptors (IPR) within the NRL region, while sedation is attributed to the inhibition of alpha2-adrenergic mechanisms in the locus coeruleus, which is involved in the control of the sleep-waking cycle. The IPRmay constitute on interesting target for new drugs in the treatment of arterial hypertension. Finally, dysfunctions of this modulatory system which could be involved in the pathophysiologyof some forms of the hypertensive disease are under investigation.
Resumo:
Viral infections can be a major thread for the central nervous system (CNS), therefore, the immune system must be able to mount a highly proportionate immune response, not too weak, which would allow the virus to proliferate, but not too strong either, to avoid collateral damages. Here, we aim at reviewing the immunological mechanisms involved in the host defense in viral CNS infections. First, we review the specificities of the innate as well as the adaptive immune responses in the CNS, using several examples of various viral encephalitis. Then, we focus on three different modes of interactions between viruses and immune responses, namely human Herpes virus-1 encephalitis with the defect in innate immune response which favors this disease; JC virus-caused progressive multifocal leukoencephalopathy and the crucial role of adaptive immune response in this example; and finally, HIV infection with the accompanying low grade chronic inflammation in the CNS in some patients, which may be an explanation for the presence of cognitive disorders, even in some well-treated HIV-infected patients. We also emphasize that, although the immune response is generally associated with viral replication control and limited cellular death, an exaggerated inflammatory reaction can lead to tissue damage and can be detrimental for the host, a feature of the immune reconstitution inflammatory syndrome (IRIS). We will briefly address the indication of steroids in this situation.
Resumo:
Lesions involving the sympathetic (para-vertebral ganglia) and para-sympathetic ganglia of intestines (Auerbach plexus) and heart (right atrial ganglia) were comparatively analyzed in mice infected with either of three different strain types of Trypanosoma cruzi, during acute and chronic infection, in an attempt to understand the influence of parasite strain in causing autonomic nervous system pathology. Ganglionar involvement with neuronal destruction appeared related to inflammation, which most of the times extended from neighboring adipose and cardiac, smooth and striated muscular tissues. Intraganglionic parasitism was exceptional. Inflammation involving peripheral nervous tissue exhibited a focal character and its variability in the several groups examined appeared unpredictable. Although lesions were generally more severe with the Y strain, comparative qualitative study did not allow the conclusion, under the present experimental conditions, that one strain was more pathogenic to the autonomic nervous system than others. No special tropism of the parasites from any strain toward autonomic ganglia was disclosed.
Resumo:
Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.
Resumo:
Polyomavirus JC (JCV) is ubiquitous in humans and causes a chronic demyelinating disease of the central nervous system , progressive multifocal leukoencephalopathy which is common in AIDS. JCV is excreted in urine of 30-70% of adults worldwide. Based on sequence analysis of JCV complete genomes or fragments thereof, JCV can be classified into geographically derived genotypes. Types 1 and 2 are of European and Asian origin respectively while Types 3 and 6 are African in origin. Type 4, a possible recombinant of European and African genotypes (1 and 3) is common in the USA. To delineate the JCV genotypes in an aboriginal African population, random urine samples were collected from the Biaka Pygmies and Bantu from the Central African Republic. There were 43 males and 25 females aged 4-55 years, with an average age of 26 years. After PCR amplification of JCV in urine, products were directly cycle sequenced. Five of 23 Pygmy adults (22%) and four of 20 Bantu adults (20%) were positive for JC viruria. DNA sequence analysis revealed JCV Type 3 (two), Type 6 (two) and one Type 1 variant in Biaka Pygmies. All the Bantu strains were Type 6. Type 3 and 6 strains of JCV are the predominant strains in central Africa. The presence of multiple subtypes of JCV in Biaka Pygmies may be a result of extensive interactions of Pygmies with their African tribal neighbors during their itinerant movements in the equatorial forest.
Resumo:
Alterations in motor functions are well-characterized features observed in humans and experimental animals subjected to thyroid hormone dysfunctions during development. Here we show that congenitally hypothyroid rats display hyperactivity in the adult life. This phenotype was associated with a decreased content of cannabinoid receptor type 1 (CB(1)) mRNA in the striatum and a reduction in the number of binding sites in both striatum and projection areas. These findings suggest that hyperactivity may be the consequence of a thyroid hormone deficiency-induced removal of the endocannabinoid tone, normally acting as a brake for hyperactivity at the basal ganglia. In agreement with the decrease in CB(1) receptor gene expression, a lower cannabinoid response, measured by biochemical, genetic and behavioral parameters, was observed in the hypothyroid animals. Finally, both CB(1) receptor gene expression and the biochemical and behavioral dysfunctions found in the hypothyroid animals were improved after a thyroid hormone replacement treatment. Thus, the present study suggests that impairment in the endocannabinoid system can underlay the hyperactive phenotype associated with hypothyroidism.
Resumo:
Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.
Resumo:
INTRODUCTION: The Neuromodulation Appropriateness Consensus Committee (NACC) of the International Neuromodulation Society (INS) evaluated evidence regarding the safety and efficacy of neurostimulation to treat chronic pain, chronic critical limb ischemia, and refractory angina and recommended appropriate clinical applications. METHODS: The NACC used literature reviews, expert opinion, clinical experience, and individual research. Authors consulted the Practice Parameters for the Use of Spinal Cord Stimulation in the Treatment of Neuropathic Pain (2006), systematic reviews (1984 to 2013), and prospective and randomized controlled trials (2005 to 2013) identified through PubMed, EMBASE, and Google Scholar. RESULTS: Neurostimulation is relatively safe because of its minimally invasive and reversible characteristics. Comparison with medical management is difficult, as patients considered for neurostimulation have failed conservative management. Unlike alternative therapies, neurostimulation is not associated with medication-related side effects and has enduring effect. Device-related complications are not uncommon; however, the incidence is becoming less frequent as technology progresses and surgical skills improve. Randomized controlled studies support the efficacy of spinal cord stimulation in treating failed back surgery syndrome and complex regional pain syndrome. Similar studies of neurostimulation for peripheral neuropathic pain, postamputation pain, postherpetic neuralgia, and other causes of nerve injury are needed. International guidelines recommend spinal cord stimulation to treat refractory angina; other indications, such as congestive heart failure, are being investigated. CONCLUSIONS: Appropriate neurostimulation is safe and effective in some chronic pain conditions. Technological refinements and clinical evidence will continue to expand its use. The NACC seeks to facilitate the efficacy and safety of neurostimulation.
Resumo:
Estudi realitzat a partir d’una estada al Institut de Génétique Moléculaire de Montpellier, França, entre 2010 i 2012. En aquest projecte s’ha avaluat les avantatges dels vectors adenovirals canins tipus 2 (CAV2) com a vectors de transferència gènica al sistema nerviós central (SNC) en un model primat no-humà i en un model caní del síndrome de Sly (mucopolisacaridosis tipus 7, MPS VII), malaltia monogènica que cursa amb neurodegeneració. En una primera part del projecte s’ha avaluat la biodistribució, l’eficàcia i la durada de l’expressió del transgen en un model primat no humà, (Microcebus murinus). Com ha vector s’ha utilitzat un CAV2 de primera generació que expressa la proteïna verda fluorescent (CAVGFP). Els resultats aportats en aquesta memòria demostren que en primats no humans, com en d’altres espècies testades anteriorment per l’equip de l’EJ Kremer, la injecció intracerebral de CAV2 resulta en una extensa transducció del SNC, siguent les neurones i els precursors neuronals les cèl•lules preferencialment transduïdes. Els vectors canins, servint-se de vesícules intracel•lulars són transportats, majoritàriament, des de les sinapsis cap al soma neuronal, aquest transport intracel•lular permet una extensa transducció del SNC a partir d’una única injecció intracerebral dels vectors virals. En una segona part d’aquest projecte s’ha avaluat l’ús terapèutic dels CAV2. S’ha injectat un vector helper-dependent que expressa el gen la b-glucuronidasa i el gen de la proteïna verda fluorescent (HD-RIGIE), en el SNC del model caní del síndrome de Sly (MPS VII). La biodistribució i la eficàcia terapèutica han estat avaluades. Els nivells d’activitat enzimàtica en animals malalts injectats amb el vector terapèutic va arribar a valors similars als dels animals no afectes. A més a més s’ha observat una reducció en la quantitat dels GAGs acumulats en les cèl•lules dels animals malalts tractats amb el vector terapèutic, demostrant la potencialitat terapèutica dels CAV2 per a malalties que afecten al SNC. Els resultats aportats en aquest treball ens permeten dir que els CAV2 són unes bones eines terapèutiques per al tractament de malalties que afecten al SNC.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
Akt/protein kinase B (PKB) plays a critical role in the regulation of metabolism, transcription, cell migration, cell cycle progression, and cell survival. The existence of viable knockout mice for each of the three isoforms suggests functional redundancy. We generated mice with combined mutant alleles of Akt1 and Akt3 to study their effects on mouse development. Here we show that Akt1-/- Akt3+/- mice display multiple defects in the thymus, heart, and skin and die within several days after birth, while Akt1+/- Akt3-/- mice survive normally. Double knockout (Akt1-/-) Akt3-/-) causes embryonic lethality at around embryonic days 11 and 12, with more severe developmental defects in the cardiovascular and nervous systems. Increased apoptosis was found in the developing brain of double mutant embryos. These data indicate that the Akt1 gene is more essential than Akt3 for embryonic development and survival but that both are required for embryo development. Our results indicate isoform-specific and dosage-dependent effects of Akt on animal survival and development.