934 resultados para CDNA MICROARRAY
Resumo:
The tachykinins hylambatin and (Thr)11-hylambatin have been isolated from the defensive skin secretion of the African hyperoliid frog, Kassina maculata,. Hylambatin (DPPDPNRFYGMMamide) is revised in structure from the original sequence by a single site substitution (Asn/Asp at position 6), and (Thr)11-hylambatin, a novel tachykinin, differs in structure from hylambatin by a single Thr/Met substitution. (Thr)11-hylambatin is five- to ten-fold more abundant than hylambatin in secretions. Synthetic replicates of both peptides were active in smooth muscle preparations including the rat tail artery, rat ileum and bovine trachea. While hylambatin displayed activity consistent with an NK1-receptor ligand, (Thr)11-hylambatin was more active than either substance P or neurokinin A in both NK1- and NK-2 receptor rich preparations. Incorporation of a threoninyl residue rather than the canonical leucyl residue at the penultimate position in both substance P and neurokinin A, generated active ligands in both arterial and intestinal smooth muscle preparations. Hylambatin precursor cDNAs, designated HYBN-1 and HYBN-2, respectively, were cloned from a skin library by 3'- and 5'-RACE reactions. Both were highly-homologous containing open-reading frames of 66 amino acids encoding single copies of either hylambatin or (Thr)11-hylambatin. These data reveal a hitherto unrecognized structure/activity attribute of mammalian tachykinin receptors revealed though discovery of a novel amphibian skin-derived, site-substituted peptide ligand.
Resumo:
Amphibian skin secretions are rich sources of biologically-active peptides and several studies involving molecular cloning of their biosynthetic precursors have revealed that many exhibit highly-conserved domain architectures with an associated high degree of primary structural conservation of the signal peptides. This conservation of primary structure is reflected at the level of nucleotide sequence — a finding that has permitted our group to design primers to these sites facilitating “shotgun” cloning using cDNA libraries from uninvestigated species. Here we describe the results of such an approach using a skin secretion-derived cDNA library from the Fujian large-headed frog, Limnonectes fujianensis, a completely unstudied species. In over 50 clones studied by this approach, 12 were found to encode peptides of different primary structure. Representatives of 5 different families of antimicrobial peptides derived from the skins of ranid frogs were found and these were brevinin-1 (n = 3), the ranatuerin-2 (n = 3), esculentin-2 (n = 1), temporin (n = 1) and chensinin (n = 1). Three clones encoded peptides that were novel with no homologues present in contemporary on-line databases. These included two related 16-mer peptides, named peptides SC-16a and b, and an unrelated 24-mer, named peptide AG-24. Preliminary biological characterisation of SC-16a has demonstrated an antimicrobial activity against Gram-negative bacteria with a minimal inhibitory concentration of 35 µM with no observable haemolysis up to 200 µM. This finding may suggest that this peptide represents a novel class of antimicrobial with little effect on eukaryotic membranes.
Resumo:
Amphibian skin secretions are renowned as complex mixtures of bioactive peptides many of which are analogues of endogenous regulatory peptides. While skin secretions can be obtained non-invasively for peptidome analysis, parallel studies on the granular gland transcriptome required specimen sacrifice. The aim of the present study was to analyse archived skin secretions to determine the robustness of bioactive peptide precursor-encoding polyadenylated mRNAs in an attempt to extract maximum molecular information from rare samples. A range of solvated skin secretion samples were examined after lyophilisation for their potential to generate viable and comprehensive cDNA libraries based upon polyadenylated mRNA capture and amplification/cloning using appropriate commercial kits. Here we present unequivocal data that the granular gland transcriptome persists in a PCR amenable format even after storage for as long as 12 years in 0.1%(v/v) aqueous trifluoroacetic acid (TFA). We used a pooled skin secretion sample (2 ml) from the yellow-bellied toad, Bombina variegata (n = 14), containing the equivalent of 5 mg/ml of lyophilised skin secretion, that had been used in part for peptide isolation purposes in 1998 and had been stored at - 20 °C since that time. In the first cloning experiment, 12 different bombinin-like peptide precursor cDNAs were cloned encoding 17 different bombinins, the majority of which were novel. Subsequently, bombesin and bradykinin-related peptide precursor transcripts have been cloned successfully. These data illustrate the unexpected stability/longevity of the transcriptome in these secretions — a finding with implications for both this field of research and for the wider field of molecular biology.
Resumo:
A novel microarray was constructed with DNA PCR product probes targeting species specific functional genes of nine clinically significant respiratory pathogens, including the Gram-positive organisms (Streptococcus pneumoniae, Streptococcus pyogenes), the Gram-negative organisms (Chlamydia pneumoniae, Coxiella burnetii Haemophilus spp., Legionella pneumophila, Moraxella catarrhalis, and Pseudomonas aeruginosa), as well as the atypical bacterium, Mycoplasma pneumoniae. In a "proof-of-concept" evaluation of the developed microarray, the microarray was compared with real-time PCR from 14 sputum specimens from COPD patients. All of the samples positive for bacterial species in real-time PCR were also positive for the same bacterial species using the microarray. This study shows that a microarray using PCR probes is a potentially useful method to monitor the populations of bacteria in respiratory specimens and can be tailored to specific clinical needs such as respiratory infections of particular patient populations, including patients with cystic fibrosis and bronchiectasis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.
Resumo:
The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias
Resumo:
The diagnosis of myelodysplastic syndrome (MDS) currently relies primarily on the morphologic assessment of the patient's bone marrow and peripheral blood cells. Moreover, prognostic scoring systems rely on observer-dependent assessments of blast percentage and dysplasia. Gene expression profiling could enhance current diagnostic and prognostic systems by providing a set of standardized, objective gene signatures. Within the Microarray Innovations in LEukemia study, a diagnostic classification model was investigated to distinguish the distinct subclasses of pediatric and adult leukemia, as well as MDS. Overall, the accuracy of the diagnostic classification model for subtyping leukemia was approximately 93%, but this was not reflected for the MDS samples giving only approximately 50% accuracy. Discordant samples of MDS were classified either into acute myeloid leukemia (AML) or
Resumo:
Formalin fixed and paraffin embedded tissue (FFPE) collections in pathology departments are the largest resource for retrospective biomedical research studies. Based on the literature analysis of FFPE related research, as well as our own technical validation, we present the Translational Research Arrays (TRARESA), a tissue microarray centred, hospital based, translational research conceptual framework for both validation and/or discovery of novel biomarkers. TRARESA incorporates the analysis of protein, DNA and RNA in the same samples, correlating with clinical and pathological parameters from each case, and allowing (a) the confirmation of new biomarkers, disease hypotheses and drug targets, and (b) the postulation of novel hypotheses on disease mechanisms and drug targets based on known biomarkers. While presenting TRARESA, we illustrate the use of such a comprehensive approach. The conceptualisation of the role of FFPE-based studies in translational research allows the utilisation of this commodity, and adds to the hypothesis-generating armamentarium of existing high-throughput technologies.