320 resultados para CD3
Resumo:
A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.
Fas (CD95) expression and death-mediating function are induced by CD4 cross-linking on CD4+ T cells.
Resumo:
The CD4 receptor contributes to T-cell activation by coligating major histocompatibility complex class II on antigen presenting cells with the T-cell receptor (TCR)/CD3 complex, and triggering a cascade of signaling events including tyrosine phosphorylation of intracellular proteins. Paradoxically, CD3 cross-linking prior to TCR stimulation results in apoptotic cell death, as does injection of anti-CD4 antibodies in vivo of CD4 ligation by HIV glycoprotein (gp) 120. In this report we investigate the mechanism by which CD4 cross-linking induces cell death. We have found that CD4 cross-linking results in a small but rapid increase in levels of cell surface Fas, a member of the tumor necrosis factor receptor family implicated in apoptotic death and maintenance of immune homeostasis. Importantly, CD4 cross-linking triggered the ability of Fas to function as a death molecule. Subsequent to CD4 cross-linking, CD4+ splenocytes cultured overnight became sensitive to Fas-mediated death. Death was Fas-dependent, as demonstrated by cell survival in the absence of plate-bound anti-Fas antibody, and by the lack of CD4-induced death in cells from Fas-defective lymphoproliferative (lpr) mice. We demonstrate here that CD4 regulates the ability of Fas to induce cell death in Cd4+ T cells.
Resumo:
NK1.1+ T [natural killer (NK) T] cells express an invariant T cell antigen receptor alpha chain (TCR alpha) encoded by V alpha 14 and J alpha 281 segments in association with a limited number of V betas, predominantly V beta 8.2. Expression of the invariant V alpha 14/J alpha 281, but not V alpha 1, TCR in transgenic mice lacking endogenous TCR alpha expression blocks the development of conventional T alpha beta cells and leads to the preferential development of V alpha 14 NK T cells, suggesting a prerequisite role of invariant V alpha 14 TCR in NK T cell development. In V beta 8.2 but not B beta 3 transgenic mice, two NK T cells with different CD3 epsilon expressions, CD3 epsilon(dim) and CD3 epsilon(high), can be identified. CD3 epsilon(high) NK T cells express surface V alpha 14/V beta 8 TCR, indicating a mature cell type, whereas CD3 epsilon(dim) NK T cells express V beta 8 without V alpha 14 TCR and no significant CD3 epsilon expression (CD3 epsilon(dim)) on the cell surface. However, the latter are positive for recombination activating gene (RAG-1 and RAG-2) mRNA, which are only expressed in the precursor or immature T cell lineage, and also possess CD3 epsilon mRNA in their cytoplasm, suggesting that CD3 epsilon(dim) NK T cells are the precursor of V alpha 14 NK T cells.
Resumo:
To determine whether alternative cytotoxic T lymphocyte-associated protein 4 (CTLA4) binding proteins exist on B cells, we constructed (i) mCTLA4hIgG consisting of the extracellular region of a mouse CTLA4 molecule and the Fc portion of a human IgG1 molecule and (ii) PYAAhIgG, a mutant mCTLA4hIgG, having two amino acid substitutions on the conserved MYPPPY motif in the complementarity-determining region 3-like region and lacking detectable binding to both B7-1 and B7-2 molecules. Using these fusion proteins (mCTLA4hIgG and PYAAhIgG), we demonstrated that a mouse immature B-cell line, WEHI231 cells, expressed alternative CTLA4 binding molecules (ACBMs) that were distinct from both B7-1 and B7-2. ACBMs were 130-kDa disulfide-linked proteins. More importantly, ACBMs were able to provide costimulatory signal for T-cell proliferation in the presence of anti-CD3 monoclonal antibodies. In addition, we demonstrated that more than 20% of B220+ cells obtained from normal mouse spleen expressed ACBMs.
Resumo:
Upon stimulation with anti-CD3, suppressor T-cell (Ts) hybridomas and homologous transfectants of T-cell receptor a (TCRalpha) cDNA in the T-cell hybridoma formed a 55-kDa TCRalpha chain derivative that bound both the monoclonal anti-TCRalpha chain and polyclonal antibodies against glycosylation inhibiting factor (GIF). The peptide is a subunit of antigen-specific suppressor T-cell factor (TsF), and is considered to be a posttranslationally-formed conjugate of TCRalpha chain with GIF peptide. The TCRalpha derivative is synthesized by the transfectant after stimulation with anti-CD3, and not derived from TCR present on the cell surface. Stimulation of the stable homologous transfectants with anti-CD3 induced translocation of the 13-kDa GIF peptide into endoplasmic reticulum (ER). When a helper Ts hybridoma or a stable transfectant of the same TCRalpha cDNA in a helper cell-derived TCRalpha- clone was stimulated with anti-CD3, translocation of GIF peptide was not detected, and these cells failed to secrete a TCRalpha derivative. However, further transfection of a chimeric cDNA encoding a procalcitonin-GIF fusion protein into the helper cell-derived stable transfectant of TCRalpha cDNA resulted in translocation of the GIF protein and formation of bioactive 55-kDa GIF. The results indicated that translocation of GIF peptide through ER is unique for Ts cells, and that this process is essential for the formation/secretion of the soluble form derivative of TCRalpha chain by T cells.
Resumo:
The majority of T lymphocytes start to develop at around day 15 of gestation (d15)-d17 in the thymus and comprise the peripheral repertoire characterized by the expression of polymorphic T-cell antigen receptors (TCRs). Contrary to these conventional T cells, a subset of T cells, called natural killer (NK) T cells (most of them expressing an invariant TCR encoded by the Valpha14Jalpha281 gene with a 1-nt N-region), preferentially differentiates extrathymically and dominates the peripheral T-cell population at a high frequency (5% in splenic T cells and 40% in bone marrow T cells). Here, we investigated the development of NK T cells and found that the invariant Valpha14+ TCR transcripts and the circular DNA created by Valpha14 and Jalpha281 gene rearrangements can be detected in the embryo body at d9.5 of gestation and in the yolk sac and the fetal liver at d11.5-d13.5 of gestation, but not in the thymus, whereas T cells with Valpha1+ TCR expression, a major population in the thymus, were not observed at these early stages of gestation. Fluorescence-activated cell sorter analysis also demonstrated that there exist CD3+ alpha beta+ T cells, almost all of which are Valpha14/Vbeta8+ NK+ T cells, during early embryogenesis. To our knowledge, this demonstrates for the first time that a T lymphocyte subset develops in extrathymic tissues during the early stages of embryogenesis.
Resumo:
Pluripotent hematopoietic stem cells (PHSCs) show self-renewal and give rise to all blood cell types. The extremely low number of these cells in primary hematopoietic organs and the lack of culture systems that support proliferation of undifferentiated PHSCs have precluded the study of both the biology of these cells and their clinical application. We describe here cell lines and clones derived from PHSCs that were established from hematopoietic cells from the fetal liver or bone marrow of normal and p53-deficient mice with a combination of four growth factors. Most cell lines were Sca-1+, c-Kit+, PgP-1+, HSA+, and Lin- (B-220-, Joro 75-, 8C5-, F4/80-, CD4-, CD8-, CD3-, IgM-, and TER 119-negative) and expressed three new surface markers: Joro 177, Joro 184, and Joro 96. They did not synthesize RNA transcripts for several genes expressed at early stages of lymphocyte and myeloid/erythroid cell development. The clones were able to generate lymphoid, myeloid, and erythroid hematopoietic cells and to reconstitute the hematopoietic system of irradiated mice for a long time. The availability of lymphohematopoietic stem cell lines should facilitate the analysis of the molecular mechanisms that control self-renewal and differentiation and the development of efficient protocols for somatic gene therapy.
Resumo:
The c-rel protooncogene encodes a subunit of the NF-kappa B-like family of transcription factors. Mice lacking Rel are defective in mitogenic activation of B and T lymphocytes and display impaired humoral immunity. In an attempt to identify changes in gene expression that accompany the T-cell stimulation defects associated with the loss of Rel, we have examined the expression of cell surface activation markers and cytokine production in mitogen-stimulated Rel-/- T cells. The expression of cell surface markers including the interleukin 2 receptor alpha (IL-2R alpha) chain (CD25), CD69 and L-selectin (CD62) is normal in mitogen-activated Rel-/- T cells, but cytokine production is impaired. In Rel-/- splenic T cell cultures stimulated with phorbol 12-myristate 13-acetate and ionomycin, the levels of IL-3, IL-5, granulocyte- macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma) were only 2- to 3-fold lower compared with normal T cells. In contrast, anti-CD3 and anti-CD28 stimulated Rel-/- T cells, which fail to proliferate, make little or no detectable cytokines. Exogenous IL-2, which restitutes the proliferative response of the anti-CD3- and anti-CD28-treated Rel-/- T cells, restores production of IL-5, TNF-alpha, and IFN-gamma, but not IL-3 and GM-CSF expression to approximately normal levels. In contrast to mitogen-activated Rel-/- T cells, lipopolysaccharide-stimulated Rel-/- macrophages produce higher than normal levels of GM-CSF. These findings establish that Rel can function as an activator or repressor of gene expression and is required by T lymphocytes for production of IL-3 and GM-CSF.
Resumo:
Interleukin 2 (IL-2)-deficient (IL-2-/-) mice develop hemolytic anemia and chronic inflammatory bowel disease. Importantly, the induction of disease in IL-2-deficient mice is critically dependent on CD4+ T cells. We have studied the requirements of T cells from IL-2-deficient mice for costimulation with B7 antigens. Stable B7-1 or B7-2 chinese hamster ovary (CHO) cell transfectants could synergize with anti-CD3 monoclonal antibody (mAb) to induce the proliferation of CD4+ T cells from IL-2-/- mutant mice. Further mechanistic studies established that B7-induced activation resulted in surface expression of the alpha chain of the IL-2 receptor. B7-induced proliferation occurred independently of IL-4 and was largely independent of the common gamma chain of the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors. Finally, anti-B7-2 but not anti-B7-1 mAb was able to inhibit the activation of IL-2-/- T cells induced by anti-CD3 mAb in the presence of syngeneic antigen-presenting cells. The results of our experiments indicate that IL-2-/- CD4+ T cells remain responsive to B7 stimulation and raise the possibility that B7 antagonists have a role in the prevention/treatment of inflammatory bowel disease.
Resumo:
The pre-T-cell receptor, composed of the T-cell receptor (TCR) beta chain (TCRbeta), pre-Talpha (pTalpha) chain, and CD3 molecules, has been postulated to be a transducer of signals during the early stages of T-cell development. To examine the function of the transmembrane pTalpha chain during tbymocyte development, we generated pTalpha-/- embryonic stem cells and assayed their ability to differentiate into lymphoid cells in vivo after injection into recombination-activating gene (RAG)-2-deficient blastocysts. Thymocytes representing all stages of T-cell differentiation were detected in the thymus of pTalpha-/- chimeric mice, indicating that thymocyte development can occur without pTalpha. However, greatly reduced thymocyte numbers and substantially increased percentages of both CD4-CD8- thymocytes and TCRgammadelta+ thymocytes suggest that pTalpha plays a critical role in thymocyte expansion. To investigate the role of the pTalpha chain in allelic exclusion at the TCRbeta locus, a functionally rearranged TCRbeta minigene was introduced into pTalpha-/- and pTalpha+/- embryonic stem cells, which were subsequently assayed by RAG-2-deficient blastocyst complementation. In the absence of pTalpha, expression of the transgenic TCRbeta inhibited rearrangement of the endogenous TCRbeta locus to an extent similar to that seen in normal TCRbeta transgenic mice, suggesting that pTalpha may not be required for signaling allelic exclusion at the TCRbeta locus.
Resumo:
The cholangiopathies are a group of hepatobiliary diseases in which intrahepatic bile duct epithelial cells, or cholangiocytes, are the target for a variety of destructive processes, including immune-mediated damage. We tested the hypothesis that cholangitis could be induced in rodents by immunization with highly purified cholangiocytes. Inbred Wistar rats were immunized with purified hyperplastic cholangiocytes isolated after bile duct ligation from either syngeneic Wistar or allogeneic Fischer 344 rats; control rats were immunized with bovine serum albumin (BSA) or hepatocytes. After immunization with cholangiocytes, recipient animals developed histologic evidence of nonsuppurative cholangitis without inflammation in other organs; groups immunized with BSA or hepatocytes showed no cholangitis. Immunohistochemical studies revealed that portal tract infiltrates around bile ducts consisted of CD3-positive lymphocytes, some of which expressed major histocompatibility complex class II antigen; B cells and exogenous monocytes/macrophages were essentially absent. Transfer of unfractionated ConA-stimulated spleen cells from cholangiocyte-immunized (but not BSA-immunized) rats into recipients also caused nonsuppurative cholangitis. Moreover, these splenocytes from cholangiocyte-immunized (but not BSA-immunized) rats were cytotoxic in vitro for cultured rodent cholangiocytes; no cytotoxicity was observed against a rat hepatocyte cell line. Also, a specific antibody response in sera of cholangiocyte-immunized rats was demonstrated by immunoblots against cholangiocyte proteins. Finally, cholangiograms in cholangiocyte-immunized rats showed distortion and tortuosity of the entire intrahepatic biliary ductal system. This unique rodent model of experimental cholangitis demonstrates the importance of immune mechanisms in the pathogenesis of cholangitis and will prove useful in exploring the mechanisms by which the immune system targets and damages cholangiocytes.
Resumo:
SJL mice produce little or no IgE in response to polyclonal stimulation with anti-IgD antibody and fail to express interleukin 4 (IL-4) mRNA in the spleen 5 days after injection of anti-IgD, in contrast to other mouse strains that produce substantial amounts of IgE and IL-4. Because IL-4 is critical in IgE production, the possibility that SJL mice are poor IgE producers because their naive T cells fail to differentiate into IL-4 producers must be seriously considered. IL-4 itself is the principal factor determining that naive T cells develop into IL-4 producers. A major source of IL-4 for such differentiation is a population of CD1-specific CD4+ T cells that express NK1.1. These cells produce IL-4 within 90 min of anti-CD3 injection. T cells from SJL mice fail to produce IL-4 in response to injection of anti-CD3. Similarly, SJL T cells and CD4+ thymocytes do not produce IL-4 in response to acute in vitro stimulation. SJL T cells show a marked deficiency in CD4+ cells that express the surface receptors associated with the NK1.1+ T-cell phenotype. This result indicates that the SJL defect in IgE and IL-4 production is associated with, and may be due to, the absence of the CD4+, NK1.1+ T-cell population.
Resumo:
High-affinity folate receptors (FRs) are expressed at elevated levels on many human tumors. Bispecific antibodies that bind the FR and the T-cell receptor (TCR) mediate lysis of these tumor cells by cytotoxic T lymphocytes. In this report, conjugates that consist of folate covalently linked to anti-TCR antibodies are shown to be potent in mediating lysis of tumor cells that express either the alpha or beta isoform of the FR. Intact antibodies with an average of five folate per molecule exhibited high affinity for FR+ tumor cells but did not bind to FR- tumor cells. Lysis of FR+ cell lines could be detected at concentrations as low as 1 pM (approximately 0.1 ng/ml), which was 1/1000th the concentration required to detect binding to the FR+ cells. Various FR+ mouse tumor cell lines could be targeted with each of three different anti-TCR antibodies that were tested as conjugates. The antibodies included 1B2, a clonotypic antibody specific for the cytotoxic T cell clone 2C; KJ16, an anti-V beta 8 antibody; and 2C11, an anti-CD3 antibody. These antibodies differ in affinities by up to 100-fold, yet the cytolytic capabilities of the folate/antibody conjugates differed by no more than 10-fold. The reduced size (in comparison with bispecific antibodies) and high affinity of folate conjugates suggest that they may be useful as immunotherapeutic agents in targeting tumors that express folate receptors.
Resumo:
T-cell activation requires cooperative signals generated by the T-cell antigen receptor zeta-chain complex (TCR zeta-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, zeta-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.
Resumo:
The T-cell receptor (TCR) beta chain is instrumental in the progression of thymocyte differentiation from the CD4-CD8- to the CD4+CD8+ stage. This differentiation step may involve cell surface expression of novel CD3-TCR complexes. To facilitate biochemical characterization of these complexes, we established cell lines from thymic lymphomas originating from mice carrying a mutation in the p53 gene on the one hand and a mutation in TCR-alpha, TCR-beta, or the recombination activating gene 1 (RAG-1) on the other hand. The cell lines were CD4+CD8+ and appeared to be monoclonal. A cell line derived from a RAG-1 x p53 double mutant thymic lymphoma expressed low levels of CD3-epsilon, -gamma, and -delta on the surface. TCR-alpha x p53 double mutant cell lines were found to express complexes consisting of TCR-beta chains associated with CD3-epsilon, -gamma, and -delta chains and CD3-zeta zeta dimers. These lines will be useful tools to study the molecular structure and signal transducing properties of partial CD3-TCR complexes expressed on the surface of immature thymocytes.