951 resultados para CARA utility function
Resumo:
Human papillomaviruses (HPV) are responsible for the most common human sexually transmitted viral infections, and high-risk types are responsible for causing cervical and other cancers. The minor capsid protein L2 of HPV plays important roles in virus entry into cells, localisation of viral components to the nucleus, in DNA binding, capsid formation and stability. It also elicits antibodies that are more cross-reactive between HPV types than does the major capsid protein L1, making it an attractive potential target for new-generation, more broadly protective subunit vaccines against HPV infections. However, its low abundance in natural capsids-12-72 molecules per 360 copies of L1-limits its immunogenicity. This review will explore the biological roles of the protein, and prospects for its use in new vaccines. © 2009 Springer-Verlag.
Resumo:
Objectives: The current study investigated the change in neuromuscular contractile properties following competitive rugby league matches and the relationship with physical match demands. Design: Eleven trained, male rugby league players participated in 2–3 amateur, competitive matches (n = 30). Methods: Prior to, immediately (within 15-min) and 2 h post-match, players performed repeated counter-movement jumps (CMJ) followed by isometric tests on the right knee extensors for maximal voluntary contraction (MVC), voluntary activation (VA) and evoked twitch contractile properties of peak twitch force (Pt), rate of torque development (RTD), contraction duration (CD) and relaxation rate (RR). During each match, players wore 1 Hz Global Positioning Satellite devices to record distance and speeds of matches. Further, matches were filmed and underwent notational analysis for number of total body collisions. Results: Total, high-intensity, very-high intensity distances covered and mean speed were 5585 ± 1078 m, 661 ± 265, 216 ± 121 m and 75 ± 14 m min−1, respectively. MVC was significantly reduced immediately and 2 h post-match by 8 ± 11 and 12 ± 13% from pre-match (p < 0.05). Moreover, twitch contractile properties indicated a suppression of Pt, RTD and RR immediately post-match (p < 0.05). However, VA was not significantly altered from pre-match (90 ± 9%), immediately-post (89 ± 9%) or 2 h post (89 ± 8%), (p > 0.05). Correlation analyses indicated that total playing time (r = −0.50) and mean speed (r = −0.40) were moderately associated to the change in post-match MVC, while mean speed (r = 0.35) was moderately associated to VA. Conclusions: The present study highlights the physical demands of competitive amateur rugby league result in interruption of peripheral contractile function, and post-match voluntary torque suppression may be associated with match playing time and mean speeds.
Resumo:
New substation technology, such as non-conventional instrument transformers,and a need to reduce design and construction costs, are driving the adoption of Ethernet based digital process bus networks for high voltage substations. Protection and control applications can share a process bus, making more efficient use of the network infrastructure. This paper classifies and defines performance requirements for the protocols used in a process bus on the basis of application. These include GOOSE, SNMP and IEC 61850-9-2 sampled values. A method, based on the Multiple Spanning Tree Protocol (MSTP) and virtual local area networks, is presented that separates management and monitoring traffic from the rest of the process bus. A quantitative investigation of the interaction between various protocols used in a process bus is described. These tests also validate the effectiveness of the MSTP based traffic segregation method. While this paper focusses on a substation automation network, the results are applicable to other real-time industrial networks that implement multiple protocols. High volume sampled value data and time-critical circuit breaker tripping commands do not interact on a full duplex switched Ethernet network, even under very high network load conditions. This enables an efficient digital network to replace a large number of conventional analog connections between control rooms and high voltage switchyards.
Resumo:
This chapter presents a pilot study examining the interactive contributions of executive function development/impairment and psychosocial stress to young adults’ (17-30 years old) driving behaviour in a simulator city scenario.
Resumo:
Circulating tumour cells (CTCs) have attracted much recent interest in cancer research as a potential biomarker and as a means of studying the process of metastasis. It has long been understood that metastasis is a hallmark of malignancy, and conceptual theories on the basis of metastasis from the nineteenth century foretold the existence of a tumour "seed" which is capable of establishing discrete tumours in the "soil" of distant organs. This prescient "seed and soil" hypothesis accurately predicted the existence of CTCs; microscopic tumour fragments in the blood, at least some of which are capable of forming metastases. However, it is only in recent years that reliable, reproducible methods of CTC detection and analysis have been developed. To date, the majority of studies have employed the CellSearch™ system (Veridex LLC), which is an immunomagnetic purification method. Other promising techniques include microfluidic filters, isolation of tumour cells by size using microporous polycarbonate filters and flow cytometry-based approaches. While many challenges still exist, the detection of CTCs in blood is becoming increasingly feasible, giving rise to some tantalizing questions about the use of CTCs as a potential biomarker. CTC enumeration has been used to guide prognosis in patients with metastatic disease, and to act as a surrogate marker for disease response during therapy. Other possible uses for CTC detection include prognostication in early stage patients, identifying patients requiring adjuvant therapy, or in surveillance, for the detection of relapsing disease. Another exciting possible use for CTC detection assays is the molecular and genetic characterization of CTCs to act as a "liquid biopsy" representative of the primary tumour. Indeed it has already been demonstrated that it is possible to detect HER2, KRAS and EGFR mutation status in breast, colon and lung cancer CTCs respectively. In the course of this review, we shall discuss the biology of CTCs and their role in metastagenesis, the most commonly used techniques for their detection and the evidence to date of their clinical utility, with particular reference to lung cancer.
Resumo:
Many researchers have demonstrated the applicability of the Theory of Planned Behaviour (TPB) in predicting both intention to speed and actual speeding behaviour. However, there remain shortcomings in the explanatory power of the TPB, with research suggesting that even when drivers had reported an intention to not speed approximately 25% of drivers report behaviour that does not align with their intentions (i.e., they engaged in speeding, Elliott & Armitage, 2006). This research explores the role of a novel and promising construct, mindfulness, in enhancing the explanatory utility of the TPB for the understanding of drivers’ speeding behaviour in school zones. Mindfulness is a concept which has been widely used in studies of consciousness, but has recently been applied to the understanding of behaviour in other areas, including clinical psychology, physical activity, education and business. It has been suggested that mindfulness can also be applied to road safety, though its application within this context currently remains limited. This study was based on an e-survey of the general driving public (N=240). Overall, the results identified mindfulness as a construct which may aid understanding of the relationship between drivers’ intentions and behaviour. Theoretically, the findings may have implications in terms of identifying mindfulness as an additional explanatory construct within a TPB framework. In road safety practice, the findings suggest that efficacious countermeasures around school zones may be those that function to heighten drivers’ mindfulness, such as flashing lights and physical speed reduction measures.
Resumo:
Brief self-report symptom checklists are often used to screen for postconcussional disorder (PCD) and posttraumatic stress disorder (PTSD) and are highly susceptible to symptom exaggeration. This study examined the utility of the five-item Mild Brain Injury Atypical Symptoms Scale (mBIAS) designed for use with the Neurobehavioral Symptom Inventory (NSI) and the PTSD Checklist–Civilian (PCL–C). Participants were 85 Australian undergraduate students who completed a battery of self-report measures under one of three experimental conditions: control (i.e., honest responding, n = 24), feign PCD (n = 29), and feign PTSD (n = 32). Measures were the mBIAS, NSI, PCL–C, Minnesota Multiphasic Personality Inventory–2, Restructured Form (MMPI–2–RF), and the Structured Inventory of Malingered Symptomatology (SIMS). Participants instructed to feign PTSD and PCD had significantly higher scores on the mBIAS, NSI, PCL–C, and MMPI–2–RF than did controls. Few differences were found between the feign PCD and feign PTSD groups, with the exception of scores on the NSI (feign PCD > feign PTSD) and PCL–C (feign PTSD > feign PCD). Optimal cutoff scores on the mBIAS of ≥8 and ≥6 were found to reflect “probable exaggeration” (sensitivity = .34; specificity = 1.0; positive predictive power, PPP = 1.0; negative predictive power, NPP = .74) and “possible exaggeration” (sensitivity = .72; specificity = .88; PPP = .76; NPP = .85), respectively. Findings provide preliminary support for the use of the mBIAS as a tool to detect symptom exaggeration when administering the NSI and PCL–C.
Resumo:
In the 20 years since its inception, the EPPM has attracted much empirical support. Currently, and unsurprisingly given that is a model of fear-based persuasion, the EPPM’s explanatory utility has been based only upon fear-based messages. However, an argument is put forth herein, which draws upon existing evidence, that the EPPM may be an efficacious framework for explaining the persuasive process and outcomes of emotion-based messages more broadly when such messages are addressing serious health topics. For the current study, four different types of emotional appeals were purposefully devised and included a fear, an annoyance/agitation, a pride, and a humour-based message. All messages addressed the serious health issue of road safety, and in particular the risky behaviour of speeding. Participants (N = 551) were exposed to only one of the four messages and subsequently provided responses within a survey. A series of 2 (threat: low, high) x 2 (efficacy: low, high) analysis of variance was conducted for each of the appeals based on the EPPM’s message outcomes of acceptance and rejection. Support was found for the EPPM with a number of main effects of threat and efficacy emerging, reflecting that, irrespective of emotional appeal type, high levels of threat and efficacy enhanced message outcomes via maximising acceptance and minimising rejection. Theoretically, the findings provide support for the explanatory utility of the EPPM for emotion-based health messages more broadly. In an applied sense, the findings highlight the value of adopting the EPPM as a framework when devising and evaluating emotion-based health messages for serious health topics.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
Cold water immersion (CWI) is a popular recovery modality, but actual physiological responses to CWI after exercise in the heat have not been well documented. The purpose of this study was to examine effects of 20-min CWI (14 degrees C) on neuromuscular function, rectal (T(re)) and skin temperature (T(sk)), and femoral venous diameter after exercise in the heat. Ten well-trained male cyclists completed two bouts of exercise consisting of 90-min cycling at a constant power output (216+/-12W) followed by a 16.1km time trial (TT) in the heat (32 degrees C). Twenty-five minutes post-TT, participants were assigned to either CWI or control (CON) recovery conditions in a counterbalanced order. T(re) and T(sk) were recorded continuously, and maximal voluntary isometric contraction torque of the knee extensors (MVIC), MVIC with superimposed electrical stimulation (SMVIC), and femoral venous diameters were measured prior to exercise, 0, 45, and 90min post-TT. T(re) was significantly lower in CWI beginning 50min post-TT compared with CON, and T(sk) was significantly lower in CWI beginning 25min post-TT compared with CON. Decreases in MVIC, and SMVIC torque after the TT were significantly greater for CWI compared with CON; differences persisted 90min post-TT. Femoral vein diameter was approximately 9% smaller for CWI compared with CON at 45min post-TT. These results suggest that CWI decreases T(re), but has a negative effect on neuromuscular function.
Resumo:
Smartphones become very critical part of our lives as they offer advanced capabilities with PC-like functionalities. They are getting widely deployed while not only being used for classical voice-centric communication. New smartphone malwares keep emerging where most of them still target Symbian OS. In the case of Symbian OS, application signing seemed to be an appropriate measure for slowing down malware appearance. Unfortunately, latest examples showed that signing can be bypassed resulting in new malware outbreak. In this paper, we present a novel approach to static malware detection in resource-limited mobile environments. This approach can be used to extend currently used third-party application signing mechanisms for increasing malware detection capabilities. In our work, we extract function calls from binaries in order to apply our clustering mechanism, called centroid. This method is capable of detecting unknown malwares. Our results are promising where the employed mechanism might find application at distribution channels, like online application stores. Additionally, it seems suitable for directly being used on smartphones for (pre-)checking installed applications.
Resumo:
Purpose In this study we examine neuroretinal function in five amblyopes, who had been shown in previous functional MRI (fMRI) studies to have compromised function of the lateral geniculate nucleus (LGN), to determine if the fMRI deficit in amblyopia may have its origin at the retinal level. Methods We used slow flash multifocal ERG (mfERG) and compared averaged five ring responses of the amblyopic and fellow eyes across a 35 deg field. Central responses were also assessed over a field which was about 6.3 deg in diameter. We measured central retinal thickness using optical coherence tomography. Central fields were measured using the MP1-Microperimeter which also assesses ocular fixation during perimetry. MfERG data were compared with fMRI results from a previous study. Results Amblyopic eyes had reduced response density amplitudes (first major negative to first positive (N1-P1) responses) for the central and paracentral retina (up to 18 deg diameter) but not for the mid-periphery (from 18 to 35 deg). Retinal thickness was within normal limits for all eyes, and not different between amblyopic and fellow eyes. Fixation was maintained within the central 4° more than 80% of the time by four of the five participants; fixation assessed using bivariate contour ellipse areas (BCEA) gave rankings similar to those of the MP-1 system. There was no significant relationship between BCEA and mfERG response for either amblyopic or fellow eye. There was no significant relationship between the central mfERG eye response difference and the selective blood oxygen level dependent (BOLD) LGN eye response difference previously seen in these participants. Conclusions Retinal responses in amblyopes can be reduced within the central field without an obvious anatomical basis. Additionally, this retinal deficit may not be the reason why the LGN BOLD (blood oxygen level dependent) responses are reduced for amblyopic eye stimulation.
Resumo:
Purpose: To determine whether neuroretinal function differs in healthy persons with and without common risk gene variants for age- related macular degeneration (AMD) and no ophthalmoscopic signs of AMD, and to compare those findings in persons with manifest early AMD. Methods and Participants: Neuroretinal function was assessed with the multifocal electroretinogram (mfERG) (VERIS, Redwood City, CA,) in 32 participants (22 healthy persons with no clinical signs of AMD and 10 early AMD patients). The 22 healthy participants with no AMD were risk genotypes for either the CFH (rs380390) and/or ARMS2 (rs10490920). We used a slow flash mfERG paradigm (3 inserted frames) and a 103 hexagon stimulus array. Recordings were made with DTL electrodes; fixation and eye movements were monitored online. Trough N1 to peak P1 (N1P1) response densities and P1-implicit times (IT) were analysed in 5 concentric rings. Results: N1P1 response densities (mean ± SD) for concentric rings 1-3 were on average significantly higher in at-risk genotypes (ring 1: 17.97 nV/deg2 ± 1.9, ring 2: 11.7 nV/deg2 ±1.3, ring 3: 8.7 nV/deg2 ± 0.7) compared to those without risk (ring 1: 13.7 nV/deg2 ± 1.9, ring 2: 9.2 nV/deg2 ±0.8, ring 3: 7.3 nV/deg2 ± 1.1) and compared to persons with early AMD (ring 1: 15.3 nV/deg2 ± 4.8, ring 2: 9.1 nV/deg2 ±2.3, ring 3 nV/deg2: 7.3± 1.3) (p<0.5). The group implicit times, P1-ITs for ring 1 were on average delayed in the early AMD patients (36.4 ms ± 1.0) compared to healthy participants with (35.1 ms ± 1.1) or without risk genotypes (34.8 ms ±1.3), although these differences were not significant. Conclusion: Neuroretinal function in persons with normal fundi can be differentiated into subgroups based on their genetics. Increased neuroretinal activity in persons who carry AMD risk genotypes may be due to genetically determined subclinical inflammatory and/or histological changes in the retina. Assessment of neuroretinal function in healthy persons genetically susceptible to AMD may be a useful early biomarker before there is clinical manifestation of AMD.
Resumo:
We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.