972 resultados para C-terminal Domain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of certain Gα subunits and thereby modulate a number of G protein-dependent signaling cascades. Currently, little is known about the regulation of RGS proteins themselves. We identified a short-lived RGS protein, RGS7, that is rapidly degraded through the proteasome pathway. The degradation of RGS7 is inhibited by interaction with a C-terminal domain of polycystin, the protein encoded by PKD1, a gene involved in autosomal-dominant polycystic kidney disease. Furthermore, membranous expression of C-terminal polycystin relocalized RGS7. Our results indicate that rapid degradation and interaction with integral membrane proteins are potential means of regulating RGS proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NMR structures of three single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121–230), are presented. In hPrP(M166V) and hPrP(R220K) the substitution is with the corresponding residue in murine PrP, and in hPrP(S170N) it is with the corresponding Syrian hamster residue. All three substitutions are in the surface region of the structure of the cellular form of PrP (PrPC) that is formed by the C-terminal part of helix 3, with residues 218–230, and a loop of residues 166–172. This molecular region shows high species variability and has been implicated in specific interactions with a so far not further characterized “protein X,” and it is related to the species barrier for transmission of prion diseases. As expected, the three variant hPrP(121–230) structures have the same global architecture as the previously determined wild-type bovine, human, murine, and Syrian hamster prion proteins, but with the present study two localized “conformational markers” could be related with single amino acid exchanges. These are the length and quality of definition of helix 3, and the NMR-observability of the residues in the loop 166–172. Poor definition of the C-terminal part of helix 3 is characteristic for murine PrP and has now been observed also for hPrP(R220K), and NMR observation of the complete loop 166–172 has so far been unique for Syrian hamster PrP and is now also documented for hPrP(S170N).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cases of autosomal-dominant familial Alzheimer's disease are linked to mutations in the presenilin genes (PS1 and PS2). In addition to modulating β-amyloid production, presenilin mutations also produce highly specific and selective alterations in intracellular calcium signaling. Although the molecular mechanisms underlying these changes are not known, one candidate molecular mediator is calsenilin, a recently identified calcium-binding protein that associates with the C terminus of both PS1 and PS2. In this study, we investigated the effects of calsenilin on calcium signaling in Xenopus oocytes expressing either wild-type or mutant PS1. In this system, mutant PS1 potentiated the amplitude of calcium signals evoked by inositol 1,4,5-trisphosphate and also accelerated their rates of decay. We report that calsenilin coexpression reverses both of these potentially pathogenic effects. Notably, expression of calsenilin alone had no discernable effects on calcium signaling, suggesting that calsenilin modulates these signals by a mechanism independent of simple calcium buffering. Our findings further suggest that the effects of presenilin mutations on calcium signaling are likely mediated through the C-terminal domain, a region that has also been implicated in the modulation of β-amyloid production and cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells from patients with Cockayne syndrome (CS) are hypersensitive to DNA-damaging agents and are unable to restore damage-inhibited RNA synthesis. On the basis of repair kinetics of different types of lesions in transcriptionally active genes, we hypothesized previously that impaired transcription in CS cells is a consequence of defective transcription initiation after DNA damage induction. Here, we investigated the effect of UV irradiation on transcription by using an in vitro transcription system that allowed uncoupling of initiation from elongation events. Nuclear extracts prepared from UV-irradiated or mock-treated normal human and CS cells were assayed for transcription activity on an undamaged β-globin template. Transcription activity in nuclear extracts closely mimicked kinetics of transcription in intact cells: extracts from normal cells prepared 1 h after UV exposure showed a strongly reduced activity, whereas transcription activity was fully restored in extracts prepared 6 h after treatment. Extracts from CS cells exhibited reduced transcription activity at any time after UV exposure. Reduced transcription activity in extracts coincided with a strong reduction of RNA polymerase II (RNAPII) containing hypophosphorylated C-terminal domain, the form of RNAPII known to be recruited to the initiation complex. These results suggest that inhibition of transcription after UV irradiation is at least partially caused by repression of transcription initiation and not solely by blocked elongation at sites of lesions. Generation of hypophosphorylated RNAPII after DNA damage appears to play a crucial role in restoration of transcription. CS proteins may be required for this process in a yet unknown way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retrovirus assembly and maturation involve folding and transport of viral proteins to the virus assembly site followed by subsequent proteolytic cleavage of the Gag polyprotein within the nascent virion. We report that inhibiting proteasomes severely decreases the budding, maturation, and infectivity of HIV. Although processing of the Env glycoproteins is not changed, proteasome inhibitors inhibit processing of Gag polyprotein by the viral protease without affecting the activity of the HIV-1 viral protease itself, as demonstrated by in vitro processing of HIV-1 Gag polyprotein Pr55. Furthermore, this effect occurs independently of the virus release function of the HIV-1 accessory protein Vpu and is not limited to HIV-1, as proteasome inhibitors also reduce virus release and Gag processing of HIV-2. Electron microscopy analysis revealed ultrastructural changes in budding virions similar to mutants in the late assembly domain of p6gag, a C-terminal domain of Pr55 required for efficient virus maturation and release. Proteasome inhibition reduced the level of free ubiquitin in HIV-1-infected cells and prevented monoubiquitination of p6gag. Consistent with this, viruses with mutations in PR or p6gag were resistant to detrimental effects mediated by proteasome inhibitors. These results indicate the requirement for an active proteasome/ubiquitin system in release and maturation of infectious HIV particles and provide a potential pharmaceutical strategy for interfering with retrovirus replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genomic sequence of Mycoplasma pneumoniae establish this cell-wall-less prokaryote as among the smallest known microorganisms capable of self-replication. However, this genomic simplicity and corresponding biosynthetic austerity are sharply contrasted by the complex terminal structure found in this species. This tip structure (attachment organelle) directs colonization of the human respiratory mucosa, leading to bronchitis and atypical pneumonia. Furthermore, formation of a second tip structure appears to precede cell division, implying temporal regulation. However, the organization, regulation, and assembly of the attachment organelle in M. pneumoniae are poorly understood, and no counterparts have been identified among the walled bacteria. M. pneumoniae possesses a cytoskeleton-like structure required to localize adhesin proteins to the attachment organelle. The cytadherence-associated proteins HMW1, HMW2, and HMW3 are components of the mycoplasma cytoskeleton, with HMW1 localizing strictly along the filamentous extensions from the cell body and HMW3 being a key structural element of the terminal organelle. Disruptions in hmw2 result in the loss of HMW1 and HMW3. However, the hmw1 and hmw3 genes were transcribed and translated at wild-type levels in hmw2 mutants. HMW1 and HMW3 were relatively stable in the wild-type background over 8 h but disappeared in the mutants over this time period. Evaluation of recombinant HMW1 levels in mycoplasma mutants suggested a requirement for the C-terminal domain of HMW1 for turnover. Finally, an apparent defect in the processing of the precursor for the adhesin protein P1 was noted in the HMW− mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma brucei, the protozoan parasite causing sleeping sickness, is transmitted by a tsetse fly vector. When the tsetse takes a blood meal from an infected human, it ingests bloodstream form trypanosomes that quickly differentiate into procyclic forms within the fly's midgut. During this process, the parasite loses the 107 molecules of variant surface glycoprotein that formed its surface coat, and it develops a new coat composed of several million procyclin molecules. Procyclins, the products of a small multigene family, are glycosyl phosphatidylinositol-anchored proteins containing characteristic amino acid repeats at the C terminus [either EP (EP procyclin, a form of procyclin rich in Glu-Pro repeats) or GPEET (GPEET procyclin, a form of procyclin rich in Glu-Pro-Glu-Glu-Thr repeats)]. We have used a sensitive and accurate mass spectrometry method to analyze the appearance of different procyclins during the establishment of midgut infections in tsetse flies. We found that different procyclin gene products are expressed in an orderly manner. Early in the infection (day 3), GPEET2 is the only procyclin detected. By day 7, however, GPEET2 disappears and is replaced by several isoforms of glycosylated EP, but not the unglycosylated isoform EP2. Unexpectedly, we discovered that the N-terminal domains of all procyclins are quantitatively removed by proteolysis in the fly, but not in culture. These findings suggest that one function of the protease-resistant C-terminal domain, containing the amino acid repeats, is to protect the parasite surface from digestive enzymes in the tsetse fly gut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional inactivation of the tumor susceptibility gene tsg101 in NIH 3T3 fibroblasts results in cellular transformation and the ability to form metastatic tumors in nude mice. The N-terminal region of tsg101 protein is structurally similar to the catalytic domain of ubiquitin-conjugating enzymes, suggesting a potential role of tsg101 in ubiquitin-mediated protein degradation. The C-terminal domain of TSG101 can function as a repressor of transcription. To investigate the physiological function of tsg101, we generated a null mutation of the mouse gene by gene targeting. Homozygous tsg101−/− embryos fail to develop past day 6.5 of embryogenesis (E6.5), are reduced in size, and do not form mesoderm. Mutant embryos show a decrease in cellular proliferation in vivo and in vitro but no increase in apoptosis. Although levels of p53 transcripts were not affected in tsg101−/− embryos, p53 protein accumulated dramatically, implying altered posttranscriptional control of p53. In addition, transcription of the p53 effector, cyclin-dependent kinase inhibitor p21WAF-1/CIP-1, was increased 5- to 10-fold, whereas activation of MDM2 transcription secondary to p53 elevation was not observed. Introduction of a p53 null mutation into tsg101−/− embryos rescued the gastrulation defect and prolonged survival until E8.5. These results demonstrate that tsg101 is essential for the proliferative burst before the onset of gastrulation and establish a functional connection between tsg101 and the p53 pathway in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taking advantage of the ongoing Dictyostelium genome sequencing project, we have assembled >73 kb of genomic DNA in 15 contigs harbouring 15 genes and one pseudogene of Rho-related proteins. Comparison with EST sequences revealed that every gene is interrupted by at least one and up to four introns. For racC extensive alternative splicing was identified. Northern blot analysis showed that mRNAs for racA, racE, racG, racH and racI were present at all stages of development, whereas racJ and racL were expressed only at late stages. Amino acid sequences have been analysed in the context of Rho-related proteins of other organisms. Rac1a/1b/1c, RacF1/F2 and to a lesser extent RacB and the GTPase domain of RacA can be grouped in the Rac subfamily. None of the additional Dictyostelium Rho-related proteins belongs to any of the well-defined subfamilies, like Rac, Cdc42 or Rho. RacD and RacA are unique in that they lack the prenylation motif characteristic of Rho proteins. RacD possesses a 50 residue C-terminal extension and RacA a 400 residue C-terminal extension that contains a proline-rich region, two BTB domains and a novel C-terminal domain. We have also identified homologues for RacA in Drosophila and mammals, thus defining a new subfamily of Rho proteins, RhoBTB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallothionein (MT) localizes in the intermembrane space of liver mitochondria as well as in the cytosol and nucleus. Incubation of intact liver mitochondria with physiological, micromolar concentrations of MT leads to the import of MT into the mitochondria where it inhibits respiration. This activity is caused by the N-terminal β-domain of MT; in this system, the isolated C-terminal α-domain is inactive. Free zinc inhibits respiration at concentrations commensurate with the zinc content of either MT or the isolated β-domain, indicating that MT inhibition involves zinc delivery to mitochondria. Respiratory inhibition of uncoupled mitochondria identifies the electron transfer chain as the primary site of inhibition. The apoform of MT, thionein, is an endogenous chelating agent and activates zinc-inhibited respiration with a 1:1 stoichiometry ([zinc binding sites]/[zinc]). Carbamoylation of the lysines of MT significantly attenuates the inhibitory effect, suggesting that these residues are critical for the passage of MT through the outer mitochondrial membrane. Such an import pathway has been proposed for other proteins that also lack a mitochondrial targeting sequence, e.g., apocytochrome c, and possibly Cox17, a mitochondrial copper chaperone that is the only protein known so far to exhibit significant primary sequence homology to MT. The presence and respiratory inhibition of MT in liver, but not heart, mitochondria suggest a hitherto unknown biological modulating activity of MT in cellular respiration and energy metabolism in a tissue-specific manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-terminal domain (CTD) of the large subunit of RNA polymerase II plays a role in transcription and RNA processing. Yeast ESS1, a peptidyl-prolyl cis/trans isomerase, is involved in RNA processing and can associate with the CTD. Using several types of assays we could not find any evidence of an effect of Pin1, the human homolog of ESS1, on transcription by RNA polymerase II in vitro or on the expression of a reporter gene in vivo. However, an inhibitor of Pin1, 5-hydroxy-1,4-naphthoquinone (juglone), blocked transcription by RNA polymerase II. Unlike N-ethylmaleimide, which inhibited all phases of transcription by RNA polymerase II, juglone disrupted the formation of functional preinitiation complexes by modifying sulfhydryl groups but did not have any significant effect on either initiation or elongation. Both RNA polymerases I and III, but not T7 RNA polymerase, were inhibited by juglone. The primary target of juglone has not been unambiguously identified, although a site on the polymerase itself is suggested by inhibition of RNA polymerase II during factor-independent transcription of single-stranded DNA. Because of its unique inhibitory properties juglone should prove useful in studying transcription in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal adhesion kinase (FAK) is an important regulator of integrin signaling in adherent cells and accordingly its activity is significantly modulated during mitosis when cells detach from the extracellular matrix. During mitosis, FAK becomes heavily phosphorylated on serine residues concomitant with its inactivation and dephosphorylation on tyrosine. Little is known about the regulation of FAK activity by serine phosphorylation. In this report, we characterize two novel sites of serine phosphorylation within the C-terminal domain of FAK. Phosphorylation-specific antibodies directed to these sites and against two previously characterized sites of serine phosphorylation were used to study the regulated phosphorylation of FAK in unsynchronized and mitotic cells. Among the four major phosphorylation sites, designated pS1-pS4, phosphorylation of pS1 (Ser722) is unchanged in unsynchronized and mitotic cells. In contrast, pS3 and pS4 (Ser843 and Ser910) exhibit increased phosphorylation during mitosis. In vitro peptide binding experiments provide evidence that phosphorylation of pS1 (Ser722) may play a role in modulating FAK binding to the SH3 domain of the adapter protein p130Cas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12Δ and vps34Δ, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10CtΔp mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proteins responsible for the initiation of DNA replication are thought to be essentially unrelated in bacteria and archaea/eukaryotes. Here we show that RepA, the initiator from the Pseudomonas plasmid pPS10, and the C-terminal domain of ScOrc4p, a subunit of Saccharomyces cerevisiae (Sc) origin recognition complex (ORC), share sequence similarities. Based on biochemical and spectroscopic evidence, these similarities include common structural elements, such as a winged-helix domain and a leucine-zipper dimerization motif. We have also found that ScOrc4p, as previously described for RepA-type initiators, interacts with chaperones of the Hsp70 family both in vitro and in vivo, most probably to regulate the assembly of active ORC. In evolutionary terms, our results are compatible with the recruitment of the same protein module for initiation of DNA replication by the ancestors of present-day Gram-negative bacteria plasmids, archaea, and eukaryotes.