950 resultados para Burning emissions
Resumo:
Työssä suunniteltiin pienten kiinteistöjen keskuslämmityksen käyttöön kiinteää polttoainetta käyttävä palopää, jossa palopään pyörimisliike sekoittaa polttoainetta palamisen aikana. Polttoaineen sekoittamisella pyritään parantamaan palamisen hyötysuhdetta ja vähentämään haitallisia päästöjä. Laitteen suunnittelu toteutettiin systemaattista koneensuunnittelun metodia mukaillen. Työn aihe rajattiin koskemaan ainoastaan palopään mekaniikan suunnittelua ja mitoitusta. Suunnittelussa pyrittiin huomioimaan valmistusystävällisyys ja minimoimaan kustannukset. Laitteen suunnittelussa käytettiin SolidWorks 2014 – ohjelmaa.
Resumo:
Climate change is one of the biggest challenges faced by this generation. Despite being the single most important environmental challenge facing the planet and despite over two decades of international climate negotiations, global greenhouse gas (GHG) emissions continue to rise. By the middle of this century, GHGs must be reduced by as much as 40-70% if dangerous climate change is to be avoided. In the Kyoto Protocol no quantitative emission limitation and reduction commitments were placed on the developing countries. For the planning of the future commitments period and possible participation of developing countries, information of the functioning of the energy systems, CO2 emissions development in different sectors, energy use and technological development in developing countries is essential. In addition to the per capita emissions, the efficiency of the energy system in relation to GHG emissions is crucial for the decision of future long-term burden sharing between countries. Country’s future development of CO2 emissions can be defined by the estimated CO2 intensity of the future and the estimated GDP growth. The changes in CO2 intensity depend on several factors, but generally developed countries’ intensity has been increasing in the industrialization phase and decreasing when their economy shifts more towards the system dominated by the service sector. The level of the CO2 intensity depends by a large extent on the production structure and the energy sources that are used. Currently one of the most urgent issues regarding global climate change is to decide the future of the Kyoto Protocol. Negotiations on this topic have already been initiated, with the aim of being finalised by the 2015. This thesis provides insights into the various approaches that can be used to characterise the concept of comparable efforts for developing countries in a future international climate agreement. The thesis examines the post-Kyoto burden sharing questions for developing countries using the contraction and convergence model, which is one approach that has been proposed to allocate commitments regarding future GHG emissions mitigation. This new approach is a practical tool for the evaluation of the Kyoto climate policy process and global climate change negotiations from the perspective of the developing countries.
Resumo:
Message from the President of the United States, transmitting correspondence in relation to the burning of the steamboat Caroline.
Resumo:
Burning Springs, Niagara Falls, Ontario with P.S. Clark listed as proprietor, 19 ½ x 13 cm. There is some wear on the sides of the paper which does not affect text. There is also slight staining, n.d.
Resumo:
"Jon B. Skjaerseth, professeur associé, Fridtjof Nansen Institute (Norvège), a présenté dans le cadre du panel Gestion des risques environnementaux par les institutions financières, une conférence intitulée ""The evolution and consequences of the EU Emissions Trading System (EU ETS)""."
Resumo:
An attempt has been made in this thesis to model some of the emissions observed by SPICAM and SPICAV on Mars and Venus, respectively, viz., CO Cameron band, CO+ 2 ultraviolet doublet, N2 triplet bands, atomic oxygen green (5577 A), red doublet (6300, 6364 A), and ultraviolet (2972 A) emissions. One of major sources of these emissions is photoelectron impact ionization/excitation. In this thesis, an electron degradation model based on Monte Carlo technique has been developed to calculate the production/excitation rates of above mentioned emissions due to electron impact. The limb brightness pro les of emissions are calculated and compared with the observations wherever available. The e ect of various model input parameters on dayglow emissions intensities is also evaluated
Resumo:
Comets are the spectacular objects in the night sky since the dawn of mankind. Due to their giant apparitions and enigmatic behavior, followed by coincidental calamities, they were termed as notorious and called as `bad omens'. With a systematic study of these objects modern scienti c community understood that these objects are part of our solar system. Comets are believed to be remnant bodies of at the end of evolution of solar system and possess the material of solar nebula. Hence, these are considered as most pristine objects which can provide the information about the conditions of solar nebula. These are small bodies of our solar system, with a typical size of about a kilometer to a few tens of kilometers orbiting the Sun in highly elliptical orbits. The solid body of a comet is nucleus which is a conglomerated mixture of water ice, dust and some other gases. When the cometary nucleus advances towards the Sun in its orbit the ices sublimates and produces the gaseous envelope around the nucleus which is called coma. The gravity of cometary nucleus is very small and hence can not in uence the motion of gases in the cometary coma. Though the cometary nucleus is a few kilometers in size they can produce a transient, extensive, and expanding atmosphere with size several orders of magnitude larger in space. By ejecting gas and dust into space comets became the most active members of the solar system. The solar radiation and the solar wind in uences the motion of dust and ions and produces dust and ion tails, respectively. Comets have been observed in di erent spectral regions from rocket, ground and space borne optical instruments. The observed emission intensities are used to quantify the chemical abundances of di erent species in the comets. The study of various physical and chemical processes that govern these emissions is essential before estimating chemical abundances in the coma. Cameron band emission of CO molecule has been used to derive CO2 abundance in the comets based on the assumption that photodissociation of CO2 mainly produces these emissions. Similarly, the atomic oxygen visible emissions have been used to probe H2O in the cometary coma. The observed green ([OI] 5577 A) to red-doublet emission ([OI] 6300 and 6364 A) ratio has been used to con rm H2O as the parent species of these emissions. In this thesis a model is developed to understand the photochemistry of these emissions and applied to several comets. The model calculated emission intensities are compared with the observations done by space borne instruments like International Ultraviolet Explorer (IUE) and Hubble Space Telescope (HST) and also by various ground based telescopes.
Resumo:
Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
Little is known about gaseous carbon (C) and nitrogen (N) emissions from traditional terrace agriculture in irrigated high mountain agroecosystems of the subtropics. In an effort towards filling this knowledge gap measurements of carbon dioxide (CO_2), methane (CH_4), ammonia (NH_3) and dinitrous oxide (N_2O) were taken with a mobile photoacoustic infrared multi-gas monitor on manure-filled PE-fibre storage bags and on flood-irrigated untilled and tilled fields in three mountain oases of the northen Omani Al Jabal al Akhdar mountains. During typical 9-11 day irrigation cycles of March, August and September 2006 soil volumetric moisture contents of fields dominated by fodder wheat, barley, oats and pomegranate ranged from 46-23%. While manure incorporation after application effectively reduced gaseous N losses, prolonged storage of manure in heaps or in PE-fibre bags caused large losses of C and N. Given the large irrigation-related turnover of organic C, sustainable agricultural productivity of oasis agriculture in Oman seems to require the integration of livestock which allows for several applications of manure per year at individual rates of 20 t dry matter ha^−1.
Resumo:
In Khartoum (Sudan) a particular factor shaping urban land use is the rapid expansion of red brick making (BM) for the construction of houses which occurs on the most fertile agricultural Gerif soils along the Nile banks. The objectives of this study were to assess the profitability of BM, to explore the income distribution among farmers and kiln owners, to measure the dry matter (DM), nitrogen (N), phosphorus (P), potassium (K) and organic carbon (C_org) in cow dung used for BM, and to estimate the greenhouse gas (GHG) emissions from burned biomass fuel (cow dung and fuel wood). About 49 kiln owners were interviewed in 2009 using a semi-structured questionnaire that allowed to record socio-economic and variable cost data for budget calculations, and determination of Gini coefficients. Samples of cow dung were collected directly from the kilns and analyzed for their nutrients concentrations. To estimate GHG emissions a modified approach of the Intergovernmental Panel on Climate Change (IPCC) was used. The land rental value from red brick kilns was estimated at 5-fold the rental value from agriculture and the land rent to total cost ratio was 29% for urban farms compared to 6% for BM. The Gini coefficients indicated that income distribution among kiln owners was more equal than among urban farmers. Using IPCC default values the 475, 381, and 36 t DM of loose dung, compacted dung, and fuel wood used for BM emit annually 688, 548, and 60 t of GHGs, respectively.
Resumo:
L’objecte d’aquest estudi consisteix en determinar la influència de l’ús del biodièsel en: 1.- Les variacions en comparació amb el combustible convencional (gasoil A) en les emissions de gasos i partícules contaminants en motors de vehicles pesants de transport de mercaderies. 2.- Les variacions en comparació amb el combustible convencional (gasoil A) en el nivell de so emès per motors de vehicles pesants de transport de mercaderies. 3.- Els canvis en el consum de combustible en vehicles pesants en comparació amb la utilització de gasoil A. 4.- Els problemes tècnics observats en motors de vehicles pesants de transport de mercaderies durant un període de funcionament elevat