992 resultados para Bujari (AC)
Resumo:
Performed by NYC based ensemble TimeTable who commissioned the work. Performed at the AC Institute, NYC.
Resumo:
AC magnetic heating of superparamagnetic Co and Fe nanoparticles for application in hyperthermia was measured to find a size of nanoparticles that would result in an optimal heating for given amplitude and frequency of ac externally applied magnetic field. To measure it, a custom-made power supply connected to a 20-turn insulated copper coil in the shape of a spiral solenoid cooled with water was used. A fiber-optic temperature sensor has been used to measure the temperature with an accuracy of 0.0001 K. The magnetic field with magnitude of 20.6 µT and a frequency of oscillation equal to 348 kHz was generated inside the coil to heat magnetic nanoparticles. The maximum specific power loss or the highest heating rate for Co magnetic nanoparticles was achieved for nanoparticles of 8.2 nm in diameter. The maximum heating rate for coated Fe was found for nanoparticles with diameter of 18.61 nm. © (2013) Trans Tech Publications, Switzerland.
Resumo:
The study of AC losses in superconducting pancake coils is of utmost importance for the development of superconducting devices. Due to different technical difficulties this study is usually performed considering one of two approaches: considering superconducting coils of few turns and studying AC losses in a large frequency range vs. superconducting coils with a large number of turns but measuring AC losses only in low frequencies. In this work, a study of AC losses in 128 turn superconducting coils is performed, considering frequencies ranging from 50 Hz till 1152 Hz and currents ranging from zero till the critical current of the coils. Moreover, the study of AC losses considering two different simultaneous harmonic components is also performed and results are compared to the behaviour presented by the coils when operating in a single frequency regime. Different electrical methods are used to verify the total amount of AC losses in the coil and a simple calorimetric method is presented, in order to measure AC losses in a multi-harmonic context. Different analytical and numerical methods are implemented and/or used, to design the superconducting coils and to compute the total amount of AC losses in the superconducting system and a comparison is performed to verify the advantages and drawbacks of each method.
Resumo:
Collection : French books before 1601 ; 37.1
Resumo:
Collection : French books before 1601 ; 107.8
Resumo:
Mazarinaeus
Resumo:
Tellerianus