912 resultados para Boundaries (Estates)
Resumo:
The membranous labyrinth of the inner ear establishes a precise geometrical topology so that it may subserve the functions of hearing and balance. How this geometry arises from a simple ectodermal placode is under active investigation. The placode invaginates to form the otic cup, which deepens before pinching off to form the otic vesicle. By the vesicle stage many genes expressed in the developing ear have assumed broad, asymmetrical expression domains. We have been exploring the possibility that these domains may reflect developmental compartments that are instrumental in specifying the location and identity of different parts of the ear. The boundaries between compartments are proposed to be the site of inductive interactions required for this specification. Our work has shown that sensory organs and the endolymphatic duct each arise near the boundaries of broader gene expression domains, lending support to this idea. A further prediction of the model, that the compartment boundaries will also represent lineage-restriction compartments, is supported in part by fate mapping the otic cup. Our data suggest that two lineage-restriction boundaries intersect at the dorsal pole of the otocyst, a convergence that may be critical for the specification of endolymphatic duct outgrowth. We speculate that the patterning information necessary to establish these two orthogonal boundaries may emanate, in part, from the hindbrain. The compartment boundary model of ear development now needs to be tested through a variety of experimental perturbations, such as the removal of boundaries, the generation of ectopic boundaries, and/or changes in compartment identity.
Resumo:
Boundaries between students and teachers were once clearly defined. Students only interacted with their teachers at school. Currently, however, boundaries are becoming increasingly unclear. As technology advances, students have more venues to interact with their teachers. In addition, teachers are asked to take on more roles in their students' lives. A significant number of teachers and students engage in inappropriate relationships and the possible damage to students is high. Unfortunately, current training programs do not adequately address how teachers can maintain appropriate boundaries with their charges. This paper outlines a proposal for a new training program to fill this gap. This program utilizes training techniques that have been shown to be useful for adult learners as it helps teachers establish and maintain boundaries as well as incorporating elements of effective prevention programs.
Resumo:
Two folio-sized leaves containing a handwritten list of Cambridge real estate belonging to Harvard and the amount of related rents, signed by President Willard.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: New York City and vicinity, H.M. Wilson, geographer in charge ; triangulation by U.S. Coast and Geodetic Survey ; topography by S.H. Bodfish ... [et al. and] U.S. Coast and Geodetic Survey, N.Y. City Government and the Geological Survey of New Jersey. It was published by U.S.G.S. in 1899. Scale 1:62,500. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, cities and towns, villages, forts, cemeteries, aqueducts, boundaries, and more. Relief is shown with standard contour intervals of 20 feet. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Oyster Bay, N.Y.-Conn., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Bayville 1954, Mamaroneck 1955, Sea Cliff 1954, and Hicksville 1954 7.5 minute quadrangles compiled by the Army Map Service. The Mamaroneck quadrangle was previously compiled by the Geological Survey in 1933 and 1934. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 222 (1955), 223 (1954, 1955), and 224 (1954). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Topography of Jefferson County, Kentucky : from U.S. Geological Survey topographic atlas sheets surveyed in 1904-1910, U.S. Geological Survey ; in cooperation with Kentucky Geological Survey, C. J. Norwood, director. It was published by U.S. Geological Survey in 1912. Scale 1:62,500. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Kentucky North State Plane NAD 1983 coordinate system (in Feet) (Fipszone 1601). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 20 feet and spot heights. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Louisville and vicinity : prepared in cooperation with city, county, and state agencies, mapped by the Geological Survey and the Army Map Service. It was edited and published by the Geological Survey in 1957. Ed. of 1955. Scale 1:24,000. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Kentucky North State Plane NAD 1927 coordinate system (in Feet) (Fipszone 1601). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 feet (with 5 foot supplementary intervals). This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: The Survey Districts of North Harbour & Blueskin, Lower Harbour West, North East Valley, Upper Harbour West, Tomahawk, Sawyers Bay, Andersons Bay, Portobello Bay, Otago Peninsula & Upper Harbour East, drawn by G.P. Wilson, April 1896. It was published by N.Z. Lands and Survey in 1896. Covers the Dunedin region, New Zealand. Scale [ca. 1:63,360]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM Zone 59S, meters, WGS 1984) projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as property lot and block numbers, boundaries of survey districts and blocks, boroughs, townships and estates, drainage, selected roads, railroads and stations, selected buildings and industry locations, cemeteries, shoreline features, docks and wharves, and more. Relief shown by spot heights.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
by Mounsieur Sanson ; rendred into English and illustrated by Richard Blome ; Francis Lamb Sculpit.
Resumo:
Following the research agenda introduced by Will Kymlicka, this qualitative study offers an interpretation of how the sub-national elites of Québec and South Tyrol police the integration of immigrants. For these national minority groups, which are constantly undergoing a process of redefinition of their collective identities by differentiating themselves from the Others who do not belong to the in-group, immigrants have progressively become the most significant Others as they are not part of the original system of compromises. This article questions how sub-national elites are handling this relatively new kind of ethnocultural diversity brought about by large-scale permanent immigration on two levels: first, the political narrative of the ruling sub-national parties, their electoral appeals, manifestos and speeches; second, the policy arrangements for the integration of immigrants in education, language and social policy. The initial approach of the article is pessimistic, as it assumes that sub-national elites will marginalize immigrants to please core nationalist supporters. In fact, the hypotheses to be tested are whether the national minority groups of Québec and South Tyrol engage in a process of reconstruction of their ethnic identity bounded by opposition to real or imagined Others – the newcomers; and whether they adopt practical measures that force newcomers to be assimilated into the group or to be marginalized. The comparison between Québec and South Tyrol provides a basic understanding of the impact of immigration in two sub-national polities that are very different, but still adopt similar political narratives and policy strategies with regard to the integration of newcomers.
Resumo:
According to the European Council decision of February 2011, the process of creating the European Union’s internal gas market should be completed by the end of 2014. Therefore, it is worth summarising the changes which have taken place in the gas markets of Central Europe so far. The past few years have seen not only a period of gradual ‘marketisation’ of the national gas sectors, but also the building of new gas infrastructure, a redrawing of the gas flow map, and changes in the ownership of the Central European gas companies. Another change in Central Europe is the fact that individual states and companies are moving away from their traditional focus on their national gas markets; instead, they are beginning to develop a variety of concepts for the regional integration of Central European markets. This publication attempts to grasp the main elements of the ongoing transformation of Central Europe’s gas markets, with particular emphasis on the situation in Poland, the Czech Republic, Slovakia and Hungary.