939 resultados para Bones Radiography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the predictive merits of selected cognitive and noncognitive variables on the national Registry exam pass rate using 2008 graduates (n = 175) from community college radiography programs in Florida. The independent variables included two GPAs, final grades in five radiography courses, self-efficacy, and social support. The dependent variable was the first-attempt results on the national Registry exam. The design was a retrospective predictive study that relied on academic data collected from participants using the self-report method and on perceptions of students' success on the national Registry exam collected through a questionnaire developed and piloted in the study. All independent variables except self-efficacy and social support correlated with success on the national Registry exam ( p < .01) using the Pearson Product-Moment Correlation analysis. The strongest predictor of the national Registry exam success was the end-of-program GPA, r = .550, p < .001. The GPAs and scores for self-efficacy and social support were entered into a logistic regression analysis to produce a prediction model. The end-of-program GPA (p = .015) emerged as a significant variable. This model predicted 44% of the students who failed the national Registry exam and 97.3% of those who passed, explaining 45.8% of the variance. A second model included the final grades for the radiography courses, self efficacy, and social support. Three courses significantly predicted national Registry exam success; Radiographic Exposures, p < .001; Radiologic Physics, p = .014; and Radiation Safety & Protection, p = .044, explaining 56.8% of the variance. This model predicted 64% of the students who failed the national Registry exam and 96% of those who passed. The findings support the use of in-program data as accurate predictors of success on the national Registry exam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon in lipids separated from organic matter of fish and marine mammal bones from bottom of the Pacific and Atlantic oceans has d13C values ranging from -21.6 to -25.8 per mil and is isotopically lighter than that in lipids and total organic matter of host sediments. During fossilization of organic phosphate carbon isotope composition of bound lipids of fish bone becomes lighter and that of bones of mammals becomes heavier, possibly as a result of metabolisms of these organisms and composition of phospholipids in them.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FAPESP:95/02610

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[en] Anthropological study of the human remains of a medieval cemetery in Leopoli-Cencelle in which the sex attribution, the estimation of age at death and the estimation of stature are taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal bone necrosis induced during a drilling process is a frequent and potential phenomenon, which contributes to post-operative problems. The frictional heat generated from the contact between the drill bit and the hole wall is unavoidable. However, understanding advanced techniques for acquiring reliable thermal data on bone drilling is important to ensure the quality of the drilled hole. The purpose of this study is to present two different experimental methods to analyse the drilling conditions that generate the lower temperatures, avoiding the occurrence of thermal bone necrosis. Ex-vivo bovine bones were used to simulate the drilling process considering the effect of drill bit diameter, drill speed and feed-rate. Different experiments were performed to assess the repeatability of the tests. The results identified the drill bit diameter as the most critical parameter for inducing higher temperatures in bone drilling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he thermal bone necrosis induced during a drilling process is a frequent and potential phenomenon, which contributes to post-operative problems. The frictional heat generated from the contact between the drill bit and the hole wall is unavoidable. However, understanding advanced techniques for acquiring reliable thermal data on bone drilling is important to ensure the quality of the drilled hole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is a dynamic, highly vascularized tissue with a unique capacity to heal and regenerate without scarring. However, drilling remains a concern in several clinical procedures due to thermal damage of the bone and surrounding tissue. The success of this surgeries is dependent of many factors and also in temperature generation during the drilling bone. When an excessive heat is produced during the drilling, thermal necrosis can occur and the bone suffers injuries. Studies have shown that the increased temperature is directly related with the drilling parameters, particularly, the drill speed, feed-rate, applied force, the depth of cut, the geometry of the drill bit, the use or not of a cooling system and also the type of bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, the teaching of human anatomy in health sciences has been based on the use of cadaveric material and bone parts for practical study. The bone materials get deteriorated and hardly mark the points of insertion of muscles. However, the advent of new technologies for 3D printing and creation of 3D anatomical models applied to teaching, has enabled to overcome these problems making teaching more dynamic, realistic and attractive. This paper presents some examples of the construction of three-dimensional models of bone samples, designed using 3D scanners for posterior printing with addition printers or polymer injection printers.