977 resultados para Bone Matrix
Resumo:
Objective: Root canal obliterations may pose esthetic and clinical problems or may even be a risk factor for tooth survival. Microcalcifications in the pulp can be so extensive that the entire root canal system becomes obliterated. Since bone sialoprotein (BSP) and osteopontin (OPN) are involved in both physiological and pathological mineralization processes, our hypothesis was that these two bone-related noncollagenous proteins are present in microcalcifications of the pulp. The purpose of this study was, therefore, to characterize the nature of microcalcifications in the pulp of aged human teeth. Methods: From a large collection of human teeth, 10 were found to exhibit pulpal microcalcifications. The teeth were extracted for periodontal reasons from 39-60 year old patients. After fixation in aldehydes and decalcification, teeth were processed for embedding in LR White resin for analysis in the light and transmission electron microscope. For the detection of BSP and OPN, post-embedding high resolution immunocytochemistry was applied. Results: The microcalcifications were round or elongated, occasionally coalescing, and intensely stained with toluidine blue. Collagen fibrils were found in most but not all microcalcifications. All microcalcifications were immunoreactive for both antibodies and showed an identical labeling pattern. Gold particle labeling was extensively found throughout the interfibrillar ground substance of the microcalcifications, whereas the dentin matrix lacked immunolabeling. Conclusion: BSP and OPN appear to be major matrix constituents of pulp microcalcifications and may thus, like in other mineralized tissues, be involved in their mineralization process.
Resumo:
BACKGROUND: Despite a large body of clinical and histological data demonstrating beneficial effects of enamel matrix proteins (EMPs) for regenerative periodontal therapy, it is less clear how the available biological data can explain the mechanisms underlying the supportive effects of EMPs. OBJECTIVE: To analyse all available biological data of EMPs at the cellular and molecular levels that are relevant in the context of periodontal wound healing and tissue formation. METHODS: A stringent systematic approach was applied using the key words "enamel matrix proteins" OR "enamel matrix derivative" OR "emdogain" OR "amelogenin". The literature search was performed separately for epithelial cells, gingival fibroblasts, periodontal ligament cells, cementoblasts, osteogenic/chondrogenic/bone marrow cells, wound healing, and bacteria. RESULTS: A total of 103 papers met the inclusion criteria. EMPs affect many different cell types. Overall, the available data show that EMPs have effects on: (1) cell attachment, spreading, and chemotaxis; (2) cell proliferation and survival; (3) expression of transcription factors; (4) expression of growth factors, cytokines, extracellular matrix constituents, and other macromolecules; and (5) expression of molecules involved in the regulation of bone remodelling. CONCLUSION: All together, the data analysis provides strong evidence for EMPs to support wound healing and new periodontal tissue formation.
Resumo:
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and has a well-characterized biochemistry; however, its physiological role is completely unknown. Previous investigations into GPI-PLD have focused on the adult animal or on in vitro systems and a putative role in development has been neither proposed nor investigated. We describe the first evidence of GPI-PLD expression during mouse embryonic ossification. GPI-PLD expression was detected predominantly at sites of skeletal development, increasing during the course of gestation. GPI-PLD was observed during both intramembraneous and endochondral ossification and localized predominantly to the extracellular matrix of chondrocytes and to primary trabeculae of the skeleton. In addition, the mouse chondrocyte cell line ATDC5 expressed GPI-PLD after experimental induction of differentiation. These results implicate GPI-PLD in the process of bone formation during mouse embryogenesis.
Resumo:
Reported effects of cyclosporin A (Sandimmun, CsA) on bone have been both contradictory and controversial. Thus, stimulation of new bone formation as well as increased mineral and matrix resorption have been observed. To investigate the response of basal mineral and matrix turnover to CsA treatment at different stages of skeletal development, comparative experiments were conducted in young growing female rats and in adults. Fifty-six young animals (study A) and 40 adults (study B) received orally either the carrier substance or 5, 15, and 30 mg/kg CsA for 30 days. The following parameters were measured: (a) total skeletal mineral content by dual energy X-ray absorptiometry (DEXA) on days 1 and 30; (b) tibial trabecular volume at day 30; (c) serum osteocalcin at 5-day intervals; (d) urinary deoxypyridinoline (Dpd) excretion (days 1, 15, and 30); and (e) plasma levels of CsA. Results can be summarized as follows: in young rats (study A), total skeletal mineral was not modified by the 5- and 15-mg/kg doses of CsA, whereas 30 mg/kg induced a significant decrease (-15%, p < 0.01). This parameter was not significantly modified in adult animals (study B) subjected to the same doses. The administration of 5 mg/kg CsA did not alter tibial trabecular volume in young rats, but 15 and 30 mg/kg significantly lowered this parameter (-16.3%, p < 0.02, and -42%, p < 0.001, respectively). In adult rats, tibial trabecular volume remained unchanged with the exception of the group receiving 30 mg/kg which exhibited significantly lower values (-28%, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2-5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.
Resumo:
BACKGROUND AND OBJECTIVE Epidemiologic and clinical studies have indicated that diabetes is a risk factor for periodontal disease progression and healing. The aim of the present study was to evaluate short-term healing after enamel matrix derivative (EMD) application in combined supra/infrabony periodontal defects in diabetic rats. MATERIAL AND METHODS Thirty male Wistar rats were initially divided into two groups, one with streptozotocin-induced diabetes and another one with healthy (non-diabetic) animals. Bony defects were surgically created on the mesial root of the first maxillary molars. After root surface planing and EDTA conditioning, EMD was applied to the roots at one side of the maxillae, while those on the contralateral sides were left untreated. Animals were killed 3 wk after surgery, and block sections were prepared for histologic and histomorphometric analysis. RESULTS There was statistically significant more gingival recession in diabetic animals than in non-diabetic animals. The length of the junctional epithelium was significantly shorter in the EMD-treated sites in both diabetic and normoglycemic rats. Sulcus depth and length of supracrestal soft connective tissue showed no statistically significant differences between groups. In all animals, new bone formation was observed. Although new bone occurred more frequently in healthy animals, the extent of new bone was not significantly different between groups. In none of the teeth, a layer of new cementum was detectable. EMD had no influence on bone or cementum regeneration. Adverse reactions such as excessive inflammation due to bacterial root colonization, ankylosis and bone fractures were exclusively observed in diabetic animals, irrespective of EMD treatment. CONCLUSION Within the limits of the present study, it can be concluded that periodontal healing was impaired in streptozotocin-induced diabetic rats. EMD had no beneficial effects on new bone and cementum formation during short-term healing in this defect model and could not ameliorate the adverse effects in the systemically compromised animals.
Resumo:
A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.
Resumo:
Thrombospondin-5 (TSP5) is a large extracellular matrix glycoprotein found in musculoskeletal tissues. TSP5 mutations cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia; both show a characteristic growth plate phenotype with retention of TSP5, type IX collagen (Col9), and matrillin-3 in the rough endoplasmic reticulum. Whereas most studies focus on defining the disease process, few functional studies have been performed. TSP5 knockout mice have no obvious skeletal abnormalities, suggesting that TSP5 is not essential in the growth plate and/or that other TSPs may compensate. In contrast, Col9 knockout mice have diminished matrillin-3 levels in the extracellular matrix and early-onset osteoarthritis. To define the roles of TSP1, TSP3, TSP5, and Col9 in the growth plate, all knockout and combinatorial strains were analyzed using histomorphometric techniques. While significant alterations in growth plate organization were found in certain single knockout mouse strains, skeletal growth was only mildly disturbed. In contrast, dramatic changes in growth plate organization in TSP3/5/Col9 knockout mice resulted in a 20% reduction in limb length, corresponding to similar short stature in humans. These studies show that type IX collagen may regulate growth plate width; TSP3, TSP5, and Col9 appear to contribute to growth plate organization; and TSP1 may help define the timing of growth plate closure when other extracellular proteins are absent.
Resumo:
The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.
Resumo:
Dominant-negative mutations in the homopentameric extracellular matrix glycoprotein cartilage oligomeric matrix protein (COMP) result in inappropriate intracellular retention of misfolded COMP in the rough endoplasmic reticulum of chondrocytes, causing chondrocyte cell death, which leads to two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). COMP null mice show no adverse effects on normal bone development and growth, suggesting a possible therapy involving removal of COMP mRNA. The goal of this study was to assess the ability of a hammerhead ribozyme (Ribo56, designed against the D469del mutation) to reduce COMP mRNA expression. In COS7 cells transfected with plasmids that overexpress wild-type or mutant COMP mRNA and Ribo56, the ribozyme reduced overexpressed normal COMP mRNA by 46% and mutant COMP mRNA by 56% in a dose-dependent manner. Surprisingly, the use of recombinant adenoviruses to deliver wild-type or mutant COMP mRNA and Ribo56 simultaneously into COS7 cells proved problematic for the activity of the ribozyme to reduce COMP expression. However, in normal human costochondral cells (hCCCs) infected only with adenoviruses expressing Ribo56, expression of endogenous wild-type COMP mRNA was reduced in a dose-dependent manner by 50%. In chondrocytes that contain heterozygous COMP mutations (D469del, G427E and D511Y) that cause PSACH, Ribo56 was more effective at reducing COMP mRNA (up to 70%). These results indicate that Ribo56 is effective at reducing mutant and wild-type COMP levels in cells and suggests a possible mode of therapy to reduce the mutant protein load.
Resumo:
Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix toward the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans.
Resumo:
PURPOSE Autografts are considered to support bone regeneration. Paracrine factors released from cortical bone might contribute to the overall process of graft consolidation. The aim of this study was to characterize the paracrine factors by means of proteomic analysis. MATERIALS AND METHODS Bone-conditioned medium (BCM) was prepared from fresh bone chips of porcine mandibles and subjected to proteomic analysis. Proteins were categorized and clustered using the bioinformatic tools UNIPROT and PANTHER, respectively. RESULTS Proteomic analysis showed that BCM contains more than 150 proteins, of which 43 were categorized into "secreted" and "extracellular matrix." Growth factors that are not only detectable in BCM, but potentially also target cellular processes involved in bone regeneration, eg, pleiotrophin, galectin-1, transforming growth factor beta (TGF-β)-induced gene (TGFBI), lactotransferrin, insulin-like growth factor (IGF)-binding protein 5, latency-associated peptide forming a complex with TGF-β1, and TGF-β2, were discovered. CONCLUSION The present results demonstrate that cortical bone chips release a large spectrum of proteins with the possibility of modulating cellular aspects of bone regeneration. The data provide the basis for future studies to understand how these paracrine factors may contribute to the complex process of graft consolidation.
Resumo:
AIMS The objective of this study is to evaluate the effects of a paste-like bone substitute material with easy handling properties and improved mechanical stability on periodontal regeneration of intrabony defects in dogs. MATERIALS AND METHODS Mandibular and maxillary first and third premolars were extracted, and three-wall intrabony defects were created on second and fourth premolars. After a healing period of 3 months, acute type defects were filled with a paste-like formulation of deproteinized bovine bone mineral (DBBM) (particle size, 0.125-0.25 mm) in a collagenous carrier matrix (T1), pulverized DBBM (particle size, 0.125-0.25 mm) without the carrier (T2), or Bio-Oss® granules (particle size, 0.25-1.00 mm) as control (C). All defects were covered with a Bio-Gide® membrane. The dogs were sacrificed after 12 weeks, and the specimens were analyzed histologically and histometrically. RESULTS Postoperative healing of all defects was uneventful, and no histological signs of inflammation were observed in the augmented and gingival regions. New cementum, new periodontal ligament, and new bone were observed in all three groups. The mean vertical bone gain was 3.26 mm (T1), 3.60 mm (T2), and 3.81 mm (C). That of new cementum was 2.25 mm (T1), 3.88 mm (T2), and 3.53 mm (C). The differences did not reach statistical significance. The DBBM particles were both incorporated in new bone and embedded in immature bone marrow. CONCLUSIONS The results of this preclinical study showed that the 0.125-0.25-mm DBBM particles in a powder or paste formulation resulted in periodontal regeneration comparable to the commercially available DBBM. Osteoconductivity, in particular, was not affected by DBBM size or paste formulation. CLINICAL RELEVANCE The improved handling properties of the paste-like bone substitute consisting of small DBBM particles embedded in a collagen-based carrier hold promise for clinical applications.
Resumo:
OBJECTIVE Prolyl hydroxylases (PHD) are oxygen sensors and therefore pharmacological targets to stimulate periodontal regeneration. Here we evaluate the release profile of the PHD inhibitors dimethyloxaloylglycine and l-mimosine from bone substitutes. MATERIALS Dimethyloxaloylglycine and l-mimosine were lyophilised onto bone substitutes including bovine bone mineral, beta-tricalcium phosphate, and hydroxyapatite. Release kinetic was evaluated by bioassays with gingival and periodontal ligament fibroblasts. We determined the capacity of PHD inhibitors to provoke VEGF expression and to repress metabolic activity and proliferation as assessed by immunoassay, MTT conversion and (3)[H]thymidine incorporation, respectively. RESULTS We found that the PHD inhibitors are released from bovine bone mineral as indicated by the increase of VEGF production in gingival and periodontal ligament fibroblasts. Supernatants obtained after 1h also decreased metabolic activity and proliferation of the fibroblasts. A fibrin matrix prolonged the release of PHD inhibitors up to 192h. A similar cellular response was found when supernatants from PHD inhibitors loaded beta-tricalcium phosphate and hydroxyapatite embedded in fibrin were assessed. CONCLUSIONS In conclusion bone substitutes can serve as carriers for PHD inhibitors that maintain their capacity to provoke a pro-angiogenic response in vitro. These findings provide the basis for preclinical studies to evaluate if this release kinetic can stimulate periodontal regeneration.