970 resultados para Blind cord safety
Resumo:
This paper reports safety leaders’ perceptions of safety culture in one of Australasia’s largest construction organisations. A modified Delphi method was used including two rounds of data collection. The first round involved 41 semi-structured interviews with safety leaders within the organisation. The second round involved an online quantitative perception survey, with the same sample, aimed at confirming the key themes identified in the interviews. Participants included Senior Executives, Corporate Managers, Project Managers, Safety Managers and Site Supervisors. Interview data was analysed using qualitative thematic analysis, and the survey data was analysed using descriptive statistics. Leaders’ definitions and descriptions of safety culture were primarily action-oriented and some confusion was evident due to the sometimes implicit nature of culture in organisations. Leadership was identified as a key factor for positive safety culture in the organisation, and there was an emphasis on leaders demonstrating commitment to safety, and being visible to the project-based workforce. Barriers to safety culture improvement were also identified, including the subcontractor management issues, pace of change, and reporting requirements. The survey data provided a quantitative confirmation of the interview themes, with some minor discrepancies. The findings highlight that safety culture is a complex construct, which is difficult to define, even for experts in the organisation. Findings on the key factors indicated consistency with the current literature; however the perceptions of barriers to safety culture offer a new understanding in to how safety culture operates in practice.
Resumo:
Trauma to the spinal cord creates an initial physical injury damaging neurons, glia, and blood vessels, which then induces a prolonged inflammatory response, leading to secondary degeneration of spinal cord tissue, and further loss of neurons and glia surrounding the initial site of injury. Angiogenesis is a critical step in tissue repair, but in the injured spinal cord angiogenesis fails; blood vessels formed initially later regress. Stabilizing the angiogenic response is therefore a potential target to improve recovery after spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) can initiate angiogenesis, but cannot sustain blood vessel maturation. Platelet-derived growth factor (PDGF) can promote blood vessel stability and maturation. We therefore investigated a combined application of VEGF and PDGF as treatment for traumatic spinal cord injury, with the aim to reduce secondary degeneration by promotion of angiogenesis. Immediately after hemisection of the spinal cord in the rat we delivered VEGF and PDGF and to the injury site. One and 3 months later the size of the lesion was significantly smaller in the treated group compared to controls, and there was significantly reduced gliosis surrounding the lesion. There was no significant effect of the treatment on blood vessel density, although there was a significant reduction in the numbers of macrophages/microglia surrounding the lesion, and a shift in the distribution of morphological and immunological phenotypes of these inflammatory cells. VEGF and PDGF delivered singly exacerbated secondary degeneration, increasing the size of the lesion cavity. These results demonstrate a novel therapeutic intervention for SCI, and reveal an unanticipated synergy for these growth factors whereby they modulated inflammatory processes and created a microenvironment conducive to axon preservation/sprouting.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers exhibit safe behaviors. All the microscopic traffic simulation models include a car following model. This paper highlights the limitations of the Gipps car following model ability to emulate driver behavior for safety study purposes. A safety adapted car following model based on the Gipps car following model is proposed to simulate unsafe vehicle movements, with safety indicators below critical thresholds. The modifications are based on the observations of driver behavior in real data and also psychophysical notions. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time To Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against them. The results from simulation tests illustrate that the proposed model can predict the safety metrics better than the generic Gipps model. The outcome of this paper can potentially facilitate assessing and predicting traffic safety using microscopic simulation.
Resumo:
Research has demonstrated the benefits that clothing incorporating retroreflective markers can provide in significantly improving visibility and reducing accidents, especially at night. Adding biomotion markings to standard vests can enhance the night-time conspicuity of roadway workers by capitalizing on perceptual capabilities.
Resumo:
Bicycle riding can be a positive experience for children and young people that builds confidence, independence and promotes healthy recreation. However, these benefits are dependent upon safe bicycle riding practices. Between 1 January 2004 and 31 December 2011, 12 children and young people under the age of 18 years died in bicycle incidents in Queensland. An additional 1736 bicycle-related injuries requiring emergency department attendance are estimated to have occurred between 2008 and 2009 in Queensland for children and young people under the age of 18 years. Of the twelve bicycle-related deaths between 2004 and 2011 in Queensland, two children were aged between 5-9 years, 5 young people were 10-14 years of age and 5 young people were between 15-17 years. The two children aged 5-9 years were riding their bikes for recreation. Children aged 10-14 years were most likely to have been killed in an incident while riding to school in the morning, with teenagers aged 15-17 years most likely to be killed in incidents occurring after school and in the evening. Bicycle riders are vulnerable road users, particularly children and young people. This is due to several factors that can be grouped into: 1) developmental characteristics such as body size and proportions, perceptional and attentional issues, road safety awareness and risk taking behaviours, and 2) environmental factors such as supervision and shared road use with vehicles. This paper examines safety issues for children and young people who have died in bicycle-related incidents in Queensland, and outlines areas of focus for injury prevention practitioners.
Resumo:
Work in the Australian construction industry is fraught with risk and the potential for serious harm. The industry is consistently placed within the three most hazardous industries to work along with other industries such as mining and transport (National Occupational Health and Safety Commission, 2003). In the 2001 to 2002 period, construction work killed 39 people and injured 13,250 more. Hence, more effort is required to reduce the injury rate and maximise the value of the rehabilitation/back-to-work process.
Resumo:
Over the course of your nursing professional education, you will study the developmental tasks and the principles of health promotion across the life span. You will learn to conduct numerous assessments, such as a complete health history, a psycho-social history, a mental health assessment, a nutritional assessment, a pain assessment, a suicide risk assessment and a physical examination of a patient. However, depending on your reactions to the person there may be wide variations in the information you gather in these assessments and in the findings of the physical examination. In the 1980s there was a change in western nurse education that recognised the interaction between culture and health and since then many nursing degrees include cultural considerations in their Bachelor Programs. It is now imperative that you, as a health care provider, come to understand how culture influences health care.
Resumo:
This research project involved two studies aimed to determine whether drivers who have experienced a traffic crash resulting in a Whiplash Associated Disorder (WAD) are at an elevated risk of a subsequent traffic crash. Using data and records held by the Queensland Motor Accident Insurance Commission (MAIC) and Queensland Transport Crash Database (QTCD) the first study examined the crash involvement of two samples of drivers subsequent to a crash in which a compensable injury was incurred. One sample was of persons who had suffered a WAD, the second of persons with a soft tissue injury of equivalent severity. Since differentially altered driving exposure following the relevant injury in the two groups could be a potential confound, in the second study such exposure was estimated using survey data obtained from a sample of similarly injured drivers. These studies were supplemented by a brief analysis of qualitative data drawn from open-ended questions in the survey. In addition a comprehensive review of the literature on impaired driving due to similar medical conditions was undertaken and is reported.
Resumo:
Road safety barriers are used to minimise the severity of road accidents and protect lives and property. There are several types of barrier in use today. This paper reports the initial phase of research carried out to study the impact response of portable water-filled barrier (PWFB) which has the potential to absorb impact energy and hence provide crash mitigation under low to moderate speeds. Current research on the impact and energy absorption capacity of water-filled road safety barriers is limited due to the complexity of fluid-structure interaction under dynamic impact. In this paper, a novel fluid-structure interaction method is developed based on the combination of Smooth Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing phenomenon of water inside a PWFB is investigated to explore the energy absorption capacity of water under dynamic impact. It was found that water plays an important role in energy absorption. The coupling analysis developed in this paper will provide a platform to further the research in optimising the behaviour of the PWFB. The effect of the amount of water on its energy absorption capacity is investigated and the results have practical applications in the design of PWFBs.
Resumo:
Traditionally navigational safety analyses rely on historical collision data which is often hampered because of low collision counts, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these problems is using navigational traffic conflicts or near-misses as an alternative to the collision data. This book discusses how traffic conflicts can effectively be used in modeling of port water collision risks. Techniques for measuring and predicting collision risks in fairways, intersections, and anchorages are discussed by utilizing advanced statistical models. Risk measurement models, which quantitatively measure collision risks in waterways, are discussed. To predict risks, a hierarchical statistical modeling technique is discussed which identifies the factors influencing the risks. The modeling techniques are illustrated for Singapore port data. Results showed that traffic conflicts are an ethically appealing alternative to collision data for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.
Resumo:
Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.
Resumo:
Safety at Railway Level Crossings (RLXs) is an important issue within the Australian transport system. Crashes at RLXs involving road vehicles in Australia are estimated to cost $10 million each year. Such crashes are mainly due to human factors; unintentional errors contribute to 46% of all fatal collisions and are far more common than deliberate violations. This suggests that innovative intervention targeting drivers are particularly promising to improve RLX safety. In recent years there has been a rapid development of a variety of affordable technologies which can be used to increase driver’s risk awareness around crossings. To date, no research has evaluated the potential effects of such technologies at RLXs in terms of safety, traffic and acceptance of the technology. Integrating driving and traffic simulations is a safe and affordable approach for evaluating these effects. This methodology will be implemented in a driving simulator, where we recreated realistic driving scenario with typical road environments and realistic traffic. This paper presents a methodology for evaluating comprehensively potential benefits and negative effects of such interventions: this methodology evaluates driver awareness at RLXs , driver distraction and workload when using the technology . Subjective assessment on perceived usefulness and ease of use of the technology is obtained from standard questionnaires. Driving simulation will provide a model of driving behaviour at RLXs which will be used to estimate the effects of such new technology on a road network featuring RLX for different market penetrations using a traffic simulation. This methodology can assist in evaluating future safety interventions at RLXs.
Resumo:
There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX.