945 resultados para Blastomere Cleavage
Resumo:
Objective: To study the effect of freeze-thaw on embryos derived from intracytoplasmic sperm injection (ICSI) using surgically retrieved and ejaculated spermatozoa. Design: Retrospective study. Setting: Private IVF center. Patient(s): Three hundred eighty-three patients undergoing frozen-thawed ET cycles. Intervention(s): Testicular sperm aspiration (TESA) or percutaneous epididymal sperm aspiration (PESA) were the sperm surgical retrieval methods used for ICSI. Embryos resulting from ICSI using Surgically retrieved and ejaculated spermatozoa were frozen, thawed, and transferred. Main Outcome Measure(s): Post-thaw survival, implantation, and pregnancy rates. Result(s): No differences were found between the ejaculated sperm and TESA/PESA groups in terms of post-thaw survival rate (68.4% vs. 66.1%, respectively), pregnancy rate (20.1% vs. 16.1%), and implantation rate (10.6% vs. 12.7%). Similar results were found for those variables when comparing TESA and PESA groups. Conclusion(s): Cleavage embryos arising from ICSI cycles using testicular and epididymal spermatozoa can be frozen with survival, pregnancy,and implantation rates comparable to those obtained with ejaculated spermatozoa. (Fertil Steril (R) 2009;91:727-32. (C) 2009 by American Society for Reproductive Medicine.)
Resumo:
Studies have demonstrated that oviductal fluid (ODF) proteins associate with eggs of numerous species including the bovine. In this study, the association of three ODF proteins, the bovine oestrus-associated protein, osteopontin (OPN), lipocalin-type prostaglandin D synthase (L-PGDS), with the bovine zona pellucida (ZP) was demonstrated by immunohistochemistry and western blot. The biological function of ODF derived egg-associated OPN and L-PGDS in sperm binding, fertilization and embryonic development was also explored. In vitro matured bovine oocytes were pre-incubated with ODF collected by cannula from cows in oestrus, or ODF with antibodies to OPN, L-PGDS and bovine serum albumin (BSA). Following incubation, oocytes were inseminated with 1 x 10(5) frozen-thawed spermatozoa, and they were evaluated for sperm binding, fertilization and embryonic development in vitro. Pre-treatment of ODF with antibodies to all of proteins reduced sperm binding to the ZP and fertilization in vitro. Cleavage rates were not significantly different among incubations, but rates of embryo development were significantly decreased. We conclude that antibodies to OPN, L-PGDS and BSA react with oocytes incubated with ODF and inhibit sperm binding, fertilization and embryonic development in vitro, suggesting a potential role of these proteins in these events.
Resumo:
Objective: The aim of this study was to investigate the prevalence of the Eosinophil cationic protein (ECP)-gene polymorphism 434(G > C) in oral squamous cell carcinoma (OSCC) patients and its association with tumor-associated tissue eosinophilia (TATE), demographic, clinical, and microscopic variables. Methods: The ECP genotypes of 165 healthy individuals and 157 OSCC patients were detected by PCR-RFLP analysis after cleavage of the amplified DNA sequence with enzyme PstI. TATE was obtained by morphometric analysis. Chi-square test or Fisher`s exact test was used to analyze the association of ECP-gene polymorphism 434(G > C) with TATE, demographic, clinical, and microscopic variables in OSCC patients. Disease-free survival and overall survival were calculated by the Kaplan-Meier product-limit actuarial method and the comparison of the survival curves were performed using log rank test. Results: Most of healthy individuals (53.33%) and OSCC patients (57.97%) were heterozygous for the ECP 434(G > C) polymorphism. Based on numerical differences, our results showed that OSCC patients with intense TATE and at least one C allele had a higher frequency of bilateral neck dissection, local recurrence, vascular embolization, involved resection margins, and postoperative radiotherapy. No statistically significant differences on survival rates were found in OSCC patients presenting different ECP 434(G > C) genotypes. Conclusions: These results suggest a tendency towards a poor clinical outcome in OSCC patients with intense TATE and 434GC/CC genotypes, probably due to an ECP genetic variant with altered cytotoxic activity.
Resumo:
Histone deacetylase inhibitors show promise as chemotherapeutic agents and have been demonstrated to block proliferation in a wide range of tumor cell lines. Much of this antiproliferative effect has been ascribed to the up-regulated expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). In this article, we report that p21 expression was up-regulated by relatively low doses of the histone deacetylase inhibitor azelaic bishydroxamic acid (ABHA) and correlated with a proliferative arrest. Higher doses of ABHA were cytotoxic. Cells that did not up-regulate p21 expression were hypersensitive to killing by ABHA and died via apoptosis, whereas up-regulation of p21 correlated with reduced sensitivity and a block in the apoptotic mechanism, and these cells seemed to die by necrosis. Using isogenic p21(+/+) and p21(-/-) cell lines and direct inhibition of caspase activity, we demonstrate that the reduced sensitivity to killing by ABHA is a consequence of inhibition of apoptosis by up-regulated p21 expression. These data indicate the enormous potential of therapeutic strategies that bypass the cytoprotective effect of p21 and act on the same molecular targets as the histone deacetylase inhibitors.
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) with 2 mol% perfluoropropyl vinyl ether (PPVE) was exposed to gamma -irradiation in vacuum at both 77 K and room temperature and the ESR spectra recorded. Both the main chain, similar to CF2-(CF)-F-.-CF(2)similar to, and end chain, similar to (CF2CF2)-F-. radicals were identified at both temperatures and their thermal stabilities measured, No radicals unique to the radiolytic cleavage at the PPVE units were observed at room temperature, either due to the low concentration of the comonomer or beta -scission to form a chain end radical and a nonradical species. G-values for radical formation at room temperature and 77 K were found to be 0.93 and 0.16, respectively. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We describe the genomic organization of a recently identified CC chemokine, MIP3 alpha /CCL20 (HGMW-approved symbol SCYA20). The MIP-3 alpha /CCL20 gene was cloned and sequenced, revealing a four exon, three intron structure, and was localized by FISK analysis to 2q35-q36. Two distinct cDNAs were identified, encoding two forms of MIP-3 alpha /CCL20, Ala MLP-3 alpha /CCL20 and Ser MIP-3 alpha /CCL20, that differ by one amino acid at the predicted signal peptide cleavage site. Examination of the sequence around the boundary of intron 1 and exon 2 showed that use of alternative splice acceptor sites could give rise to Ata MIP-3 alpha /CCL20 or Ser MIP-3 alpha /CCL20. Both forms of MIP-3cr/CCL20 were chemically synthesized and tested for biological activity. Both flu antigen plus IL-a-activated CD4(+) and CD8(+) T lymphoblasts and cord blood-derived dendritic cells responded to Ser and Ala MIP-3 alpha /CCL20. T lymphocytes exposed only to IL-2 responded inconsistently, while no response was detected in naive T lymphocytes, monocytes, or neutrophils. The biological activity of Ser MIP-3 alpha /CCL20 and Ala MIP-3 alpha /CCL20 and the tissue-specific preference of different splice acceptor sites are not yet known. (C) 2001 Academic Press.
Resumo:
Recombinant cathepsin D aspartic protease of Schistosoma japonicum cleaved human IgG in vitro in a time and dose-dependent manner. Optimal cleavage was seen at pH 3.6-4.5; modest cleavage remained at pH 5.0, and no cleavage was detected above pH 5.0. Amino terminal sequencing of the major cleavage fragments of human IgG identified a Fab fragment from the VH1 domain, and 2 cleavage sites in the CH2 domain below the hinge region. The P1 and P1' residues at the 2 CH2 cleavage sites were Phe254-Leu255 and Leu325-Thr326, indicating a preference by the schistosome protease for bulky hydrophobic residues flanking the scissile bond. No cleavage of the immunoglobulin light chain was detected. In addition, the recombinant schistosome protease indiscriminately degraded the human serum proteins complement C3 and serum albumin into numerous small fragments. These results demonstrate specific cleavage of human IgG by the recombinant schistosome aspartic protease, and highlight the broad range digestive specificity of the enzyme which may play a role in the degradation of host serum proteins ingested as part of the schistosome bloodmeal.
Resumo:
Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.
Resumo:
Activated monocytes and macrophages secrete the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) TNF-alpha is produced as a 26 kd transmembrane protein that is cleaved to release a 17 kd soluble protein. TNF-alpha in both forms is biologically active. The intracellular trafficking of membrane-associated TNF-alpha in lipopolysaccharide-activated mouse macrophages was assessed after treatment with the metalloprotease inhibitor BB-3103, which prevents the cleavage of pro-TNF-alpha. Immunoprecipitation and immunofluorescence studies showed sustained expression of cell-associated TNF-alpha in the presence of the inhibitor. Cell immunoreactivity and surface biotinylation revealed that uncleaved TNF-alpha accumulated on the cell surface and was endocytosed, appearing in intracellular vesicles. Perturbation of post-Golgi traffic blocked the surface expression of 26 kd TNF-alpha. Tracking a bolus of TNF-alpha over time in cycloheximide-treated cells confirmed that uncleaved TNF-alpha is first transported to the cell surface and subsequently endocytosed. Vesicular structures immunoreactive for TNF-alpha were identified as endosomes by double labeling. The secretory and membrane-associated endocytic trafficking of TNF-alpha provides a mechanism for modulating the quantity of biologically active 26 kd TNF-alpha expressed on macrophages, allowing regulation of paracrine and autocrine responses.
Resumo:
Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.
Resumo:
Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.
Resumo:
Blood-feeding parasites, including schistosomes, hookworms, and malaria parasites, employ aspartic proteases to make initial or early cleavages in ingested host hemoglobin. To better understand the substrate affinity of these aspartic proteases, sequences were aligned with and/or three-dimensional, molecular models were constructed of the cathepsin D-like aspartic proteases of schistosomes and hookworms and of plasmepsins of Plasmodium falciparum and Plasmodium vivax, using the structure of human cathepsin D bound to the inhibitor pepstatin as the template. The catalytic subsites S5 through S4' were determined for the modeled parasite proteases. Subsequently, the crystal structure of mouse renin complexed with the nonapeptidyl inhibitor t-butyl-CO-His-Pro-Phe-His-Leu [CHOHCH2]Leu-Tyr-Tyr-Ser-NH2 (CH-66) was used to build homology models of the hemoglobin-degrading peptidases docked with a series of octapeptide substrates. The modeled octapeptides included representative sites in hemoglobin known to be cleaved by both Schistosoma japonicum cathepsin D and human cathepsin D, as well as sites cleaved by one but not the other of these enzymes. The peptidase-octapeptide substrate models revealed that differences in cleavage sites were generally attributable to the influence of a single amino acid change among the P5 to P4' residues that would either enhance or diminish the enzymatic affinity. The difference in cleavage sites appeared to be more profound than might be expected from sequence differences in the enzymes and hemoglobins. The findings support the notion that selective inhibitors of the hemoglobin-degrading peptidases of blood-feeding parasites at large could be developed as novel anti-parasitic agents.
Resumo:
Transmembrane mucins are glycoproteins involved in barrier function in epithelial tissues. To identify novel transmembrane mucin genes, we performed a tblastn search of the GenBank(TM) EST data bases with a serine/ threonine-rich search string, and a rodent gene expressed in bone marrow was identified. We determined the cDNA sequence of the human orthologue of this gene, MUC13, which localizes to chromosome band 3q13.3 and generates 3.2-kilobase pair transcripts encoding a 512-amino acid protein comprised of an N-terminal mucin repeat domain, three epidermal growth factor-like sequences, a SEA module, a transmembrane domain, and a cytoplasmic tail (GenBank(TM) accession no. AF286113), MUC13 mRNA is expressed most highly in the large intestine and trachea, and at moderate levels in the kidney, small intestine, appendix, and stomach, In situ hybridization in murine tissues revealed expression in intestinal epithelial and lymphoid cells. Immunohistochemistry demonstrated the human MUC13 protein on the apical membrane of both columnar and goblet cells in the gastrointestinal tract, as well as within goblet cell thecae, indicative of secretion in addition to presence on the cell surface. MUC13 is cleaved, and the beta -subunit containing the cytoplasmic tail undergoes homodimerization, Including MUC13, there are at least five cell surface mucins expressed in the gastrointestinal tract.
Resumo:
POU-IV genes regulate neuronal development in a number of deuterostomes (chordates) and ecdysozoans (arthropods and nematodes). Currently their function and expression in the third bilaterian clade, the Lophotrochozoa, comprising molluscs, annelids and. their affiliates, is unclear. Herein we characterise the developmental expression of HasPOU-IV in the gastropod mollusc, Haliotis asinina. The POU-IV gene is transiently expressed in I I distinct larval territories during the first 3 days of development. HasPOU-IV is first expressed in sets of ventral epidermal cells in the newly hatched trochophore larvae. As larval morphogenesis proceeds, we observe HasPOU-IV transcripts in cells that putatively form a range of sensory systems including chemo- and mechanosensory cells in the foot, cephalic tentacles, the ctenidia. the geosensory statocyst and the eyes. By comparing HasPOU-IV expression with POU-IV genes in other bilaterians we infer that this class of POU-domain genes had an ancestral role in regulating sensory cell development.
Resumo:
Early development and metamorphosis of Reniera sp., a haplosclerid demosponge, have been examined to determine how gastrulation occurs in this species, and whether there is an inversion of the primary germ layers at metamorphosis. Embryogenesis occurs by unequal cleavage of blastomeres to form a solid blastula consisting micro- and macromeres; multipolar migration of the micromeres to the surface of the embryo results in a bi-layered embryo and is interpreted as gastrulation. Polarity of the embryo is determined by the movement of pigment-containing micromeres to one pole of the embryo; this pole later becomes the posterior pole of the swimming larva. The bi-layered larva has a fully differentiated monociliated outer cell layer, and a solid interior of various cell types surrounded by dense collagen. The pigmented cells at the posterior pole give rise to long cilia that are capable of responding to environmental stimuli. Larvae settle on their anterior pole. Fluorescent labeling of the monociliated outer cell layer with a cell-lineage marker (CMFDA) demonstrates that the monociliated cells resorb their cilia, migrate inwards, and transdifferentiate into the choanocytes of the juvenile sponge, and into other amoeboid cells. The development of the flagellated choanocytes and other cells in the juvenile from the monociliated outer layer of this sponge's larva is interpreted as the dedifferentiation of fully differentiated larval cells-a process seen during the metamorphosis of other ciliated invertebrate larvae-not as inversion of the primary germ layers. These results suggest that the sequences of development in this haplosclerid demosponge are not very different than those observed in many cnidarians.