967 resultados para Bladder instability
Resumo:
Motivated by applications such as gecko-inspired adhesives and microdevices featuring slender rod-like bodies, there has been an increase in interest in the deformed shapes of elastic rods adhering to rigid surfaces. A central issue in analyses of the rod-based models for these systems is the stability of the predicted equilibrium configurations. Such analyses can be complicated by the presence of intrinsic curvatures induced by fabrication processes. The results in the present paper are used to show how this curvature can lead to shear-induced bifurcations and instabilities. To characterize potential instabilities, a new set of necessary conditions for stability are employed which cater to the possible combinations of buckling and delaminating instabilities. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Hydrodynamic instabilities in gas turbine fuel injectors help to mix the fuel and air but can sometimes lock into acoustic oscillations and contribute to thermoacoustic instability. This paper describes a linear stability analysis that predicts the frequencies and strengths of hydrodynamic instabilities and identifies the regions of the flow that cause them. It distinguishes between convective instabilities, which grow in time but are convected away by the flow, and absolute instabilities, which grow in time without being convected away. Convectively unstable flows amplify external perturbations, while absolutely unstable flows also oscillate at intrinsic frequencies. As an input, this analysis requires velocity and density fields, either from a steady but unstable solution to the Navier-Stokes equations, or from time-averaged numerical simulations. In the former case, the analysis is a predictive tool. In the latter case, it is a diagnostic tool. This technique is applied to three flows: a swirling wake at Re = 400, a single stream swirling fuel injector at Re - 106, and a lean premixed gas turbine injector with five swirling streams at Re - 106. Its application to the swirling wake demonstrates that this technique can correctly predict the frequency, growth rate and dominant wavemaker region of the flow. It also shows that the zone of absolute instability found from the spatio-temporal analysis is a good approximation to the wavemaker region, which is found by overlapping the direct and adjoint global modes. This approximation is used in the other two flows because it is difficult to calculate their adjoint global modes. Its application to the single stream fuel injector demonstrates that it can identify the regions of the flow that are responsible for generating the hydrodynamic oscillations seen in LES and experimental data. The frequencies predicted by this technique are within a few percent of the measured frequencies. The technique also explains why these oscillations become weaker when a central jet is injected along the centreline. This is because the absolutely unstable region that causes the oscillations becomes convectively unstable. Its application to the lean premixed gas turbine injector reveals that several regions of the flow are hydrodynamically unstable, each with a different frequency and a different strength. For example, it reveals that the central region of confined swirling flow is strongly absolutely unstable and sets up a precessing vortex core, which is likely to aid mixing throughout the injector. It also reveals that the region between the second and third streams is slightly absolutely unstable at a frequency that is likely to coincide with acoustic modes within the combustion chamber. This technique, coupled with knowledge of the acoustic modes in a combustion chamber, is likely to be a useful design tool for the passive control of mixing and combustion instability. Copyright © 2012 by ASME.
Resumo:
The turbulent drag reduction due to riblets is a function of their size and, for different configurations, collapses well with a length scale l+g=(A+g)1/2, based in the groove cross-section Ag. The initially linear drag reduction breaks down for l+g≈11, which agrees in our DNS with the previously reported appearance of quasi-two-dimensional spanwise rollers immediately above the riblets. They are similar to those found over porous surfaces and plant canopies, and can be traced to a Kelvin-Helmholtz-like instability associated with the relaxation of the impermeability condition for the wall-normal velocity. The extra Reynolds stress associated with them accounts quantitatively for the drag degradation. An inviscid model for the instability confirms its nature, agreeing well with the observed perturbation wavelengths and shapes. The onset of the instability is determined by a length scale L+w that, for conventional riblet geometries, is proportional to l+g. The instability onset, L+w≥4, corresponds to the empirical breakdown point l+g≈11.
Resumo:
The laser-diode parameters at which the steady-state regime of generation becomes unstable are analyzed within the framework of the mode-locking model. The crucial role of the transverse inhomogeneity of the field, pumping intensity, and spectrum width in developing the instabilities of the steady-state regime of generation is demonstrated. The calculated values of the instability threshold are shown to be consistent with the experimental results. © 2008 Springer Science+Business Media, Inc.
Resumo:
The self-excited global instability mechanisms existing in flat-plate laminar separation bubbles are studied here, in order to shed light on the causes of unsteadiness and three- dimensionality of unforced, nominally two-dimensional separated flows. The presence of two known linear global mechanisms, namely an oscillator behavior driven by local regions of absolute inflectional instability and a centrifugal instability giving rise to a steady three- dimensionalization of the bubble, is studied in a series of model separation bubbles. Present results indicate that absolute instability, and consequently a global oscillator behavior, does not exist for two-dimensional bubbles with a peak reversed-flow velocity below 12% of the free-stream velocity. However, the three-dimensional instability becomes active for recirculation levels as low as urev ≈ 7%. These findings suggest a route to the three-dimensionality and unsteadiness observed in experiments and simulations substantially different from that usually found in the literature, in which two-dimensional vortex shedding is followed by three-dimensionalization.
Resumo:
The control of a class of combustion systems, suceptible to damage from self-excited combustion oscillations, is considered. An adaptive stable controller, called Self-Tuning Regulator (STR), has recently been developed, which meets the apparently contradictory challenge of relying as little as possible on a particular combustion model while providing some guarantee that the controller will cause no harm. The controller injects some fuel unsteadily into the burning region, thereby altering the heat release, in response to an input signal detecting the oscillation. This paper focuses on an extension of the STR design, when, due to stringent emission requirements and to the danger of flame extension, the amount of fuel used for control is limited in amplitude. A Lyapunov stability analysis is used to prove the stability of the modified STR when the saturation constraint is imposed. The practical implementation of the modified STR remains straightforward, and simulation results, based on the nonlinear premixed flame model developed by Dowling, show that in the presence of a saturation constraint, the self-excited oscillations are damped more rapidly with the modified STR than with the original STR. © 2001 by S. Evesque. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
© 2014 Cambridge University Press. This paper describes a detailed experimental study using hot-wire anemometry of the laminar-turbulent transition region of a rotating-disk boundary-layer flow without any imposed excitation of the boundary layer. The measured data are separated into stationary and unsteady disturbance fields in order to elaborate on the roles that the stationary and the travelling modes have in the transition process. We show the onset of nonlinearity consistently at Reynolds numbers, R, of ∼ 510, i.e. at the onset of Lingwood's (J. Fluid Mech., vol. 299, 1995, pp. 17-33) local absolute instability, and the growth of stationary vortices saturates at a Reynolds number of ∼ 550. The nonlinear saturation and subsequent turbulent breakdown of individual stationary vortices independently of their amplitudes, which vary azimuthally, seem to be determined by well-defined Reynolds numbers. We identify unstable travelling disturbances in our power spectra, which continue to grow, saturating at around R=585, whereupon turbulent breakdown of the boundary layer ensues. The nonlinear saturation amplitude of the total disturbance field is approximately constant for all considered cases, i.e. different rotation rates and edge Reynolds numbers. We also identify a travelling secondary instability. Our results suggest that it is the travelling disturbances that are fundamentally important to the transition to turbulence for a clean disk, rather than the stationary vortices. Here, the results appear to show a primary nonlinear steep-fronted (travelling) global mode at the boundary between the local convectively and absolutely unstable regions, which develops nonlinearly interacting with the stationary vortices and which saturates and is unstable to a secondary instability. This leads to a rapid transition to turbulence outward of the primary front from approximately R=565 to 590 and to a fully turbulent boundary layer above 650.
Resumo:
A model of the negative bias illumination stress instability in InGaZn oxide is presented, based on the photo-excitation of electrons from oxygen interstitials. The O interstitials are present to compensate hydrogen donors. The O interstitials are found to spontaneously form in O-rich conditions for Fermi energies at the conduction band edge, much more easily that in related oxides. The excited electrons give rise to a persistent photoconductivity due to an energy barrier to recombination. The formation energy of the O interstitials varies with their separation from the H donors, which leads to a voltage stress dependence on the compensation. © 2014 AIP Publishing LLC.
Resumo:
With a series of supportive experimental phenomena as induced by ion beam bombardment, energetic beaminduced athermal activation process in Si is demonstrated. This is correlated with phenomena induced by ultrafast energy exchange in condensed matter in general. A critical modelling is presented on the above process and a universal concept: the ultrafast energy exchange-induced soft mode of phonons and the lattice instability in condensed matter are proposed.
Resumo:
This paper discusses the Klein–Gordon–Zakharov system with different-degree nonlinearities in two and three space dimensions. Firstly, we prove the existence of standing wave with ground state by applying an intricate variational argument. Next, by introducing an auxiliary functional and an equivalent minimization problem, we obtain two invariant manifolds under the solution flow generated by the Cauchy problem to the aforementioned Klein–Gordon–Zakharov system. Furthermore, by constructing a type of constrained variational problem, utilizing the above two invariant manifolds as well as applying potential well argument and concavity method, we derive a sharp threshold for global existence and blowup. Then, combining the above results, we obtain two conclusions of how small the initial data are for the solution to exist globally by using dilation transformation. Finally, we prove a modified instability of standing wave to the system under study.