992 resultados para Biology, Molecular|Biology, Microbiology|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of psoralens and ultraviolet-A radiation referred to as PUVA, is widely used in the treatment of psoriasis. PUVA therapy is highly effective in killing hyperproliferative cells, but its mechanism of action has not been fully elucidated. Psoralen binds to DNA, and upon photoactivation by UVA, it forms monofunctional adducts and interstrand cross-links. PUVA treatment has been shown to be mutagenic and to produce tumors in animals. In addition, epidemiological studies have reported a 10 to 15 percent increased risk of developing squamous cell carcinoma in individuals treated chronically with PUVA. However, it remains a treatment for skin disorders such as psoriasis because its benefits outweigh its risks. The widespread use of PUVA therapy and its associated cancer risk requires us to understand the molecular mechanisms by which PUVA induces cell death. Immortalized JB6 mouse epidermal cells, p53−/− mice, and Fas Ligand−/− (gld) mice were used to investigate the molecular mechanism by which PUVA kills cells. Treatment of JB6 cells with 10 μg/ml 8-methoxypsoralen followed by irradiation with 20 kJ/m2 UVA resulted in cell death. The cells exhibited morphological and biochemical characteristics of apoptosis such as chromatin condensation, DNA ladder formation, and TUNEL-positivity. PUVA treatment stabilized and phosphorylated p53 leading to its activation, as measured by nuclear localization and induction of p21Waf/Cip1, a transcriptional target of p53. Subsequent in vivo studies revealed that there was statistically significantly less apoptosis in p53 −/− mice than in p53+/+ mice at 72 hours after PUVA. In addition, immunohistochemical analysis revealed more Fas and FasL expression in p53+/+ mice than in p53−/− mice, suggesting that p53 is required to transcriptionally activate Fas, which in turn causes the cells to undergo apoptosis. Studies with gld mice confirmed a role for Fas/FasL interactions in PUVA-induced apoptosis. There was statistically significantly less apoptosis in gld mice compared with wild-type mice 24, 48, and 72 hours after PUVA. These results demonstrate that PUVA-induced apoptosis in mouse epidermal cells requires p53 and Fas/FasL interactions. These findings may be important for designing effective treatments for diseases such as psoriasis without increasing the patient's risk for skin cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phosphorylation balance governed by Ipl1 Aurora kinase and the Glc7 phosphatase is essential for normal chromosome segregation in S. cerevisiae . Deletion of SET1, a histone K4 methyltransferase, suppresses the temperature sensitive phenotype of ipl1-2, and loss the catalytic activity of Set1 is important for this suppression. SET1 deletion also suppresses chromosome loss in ipl1-2 cells. Deletion of other Set1 complex components suppresses the temperature sensitivity of ipl1-2 as well. In contrast, SET1 deletion is synthetic lethal combined with glc7-127. Strikingly, these effects are independent of previously defined functions for Set1 in transcription initiation and histone H3 methylation. I find that Set1 methylates conserved lysines in a kinetochore protein, Dam1, a key mitotic substrate of Ipl1/Glc7. Biochemical and genetic experiments indicate that Dam1 methylation inhibits Ipl1-mediated phosphorylation of flanking serines. My studies demonstrate that Set1 has important, unexpected functions in mitosis through modulating the phosphorylation balance regulated by Ipl1/Glc7. Moreover, my findings suggest that antagonism between lysine methylation and serine phosphorylation is a fundamental mechanism for controlling protein function. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ssel/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a carboxyl-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an amino-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Δ phenotypes. Surprisingly, all mutants predicted to abolish ATP hydrolysis complemented the temperature sensitivity of sse1Δ, whereas mutations in predicted ATP binding residues were non-functional. Remarkably, the two domains of Ssel when expressed in trans functionally complement the sse1Δ growth phenotype and interact by coimmunoprecipitation analysis, indicative of a novel type of interdomain communication. ^ Relatively little is known regarding the interactions and cellular functions of Ssel. Through co-immunoprecipitation analysis, we found that Ssel forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. The ATPase domains of Ssel and the Hsp70s were found to be critical for interaction as inactivating point mutations severely reduced interaction efficiency. Ssel stimulated Ssal ATPase activity synergistically with the co-chaperone Ydj1 via a novel nucleotide exchange activity. Furthermore, FES1, another Ssa nucleotide exchange factor, can functionally substitute for SSE1/2 when overexpressed, suggesting that Hsp70 nucleotide exchange is the fundamental role of the Sse proteins in yeast, and by extension, the Hsp110 homologs in mammals. ^ Cells lacking SSE1 were found to accumulate prepro-α-factor, but not the cotranslationally imported protein Kar2, similar to mutants in the Ssa chaperones. This indicates that the interaction between Ssel and Ssa is functionally significant in vivo. In addition, sse10 cells are compromised for cell wall strength, likely a result of decreased Hsp90 chaperone activity with the cell integrity MAP kinase SIC. Taken together, this work established that the Hsp110 family must be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiogenesis is a feature of chronic lung diseases such as asthma and pulmonary fibrosis; however, the pathways controlling pathological angiogenesis during lung disease are not completely understood. Adenosine is a signaling nucleoside that accumulates as a result of tissue hypoxia and damage. Adenosine has been implicated in the exacerbation of chronic lung disease and in the regulation of angiogenesis; however, the relationship between these factors has not been investigated. The work presented in this dissertation utilized adenosine deaminase (ADA)-deficient mice to determine whether chronic elevations of adenosine in vivo result in pulmonary angiogenesis, and to identify factors that could potentially mediate this process. Results demonstrate that there is substantial angiogenesis in the tracheas of ADA-deficient mice in association with adenosine elevations. Replacement enzyme therapy with pegylated ADA resulted in a lowering of adenosine levels and reversal of tracheal angiogenesis, indicating that the increases in vessel number are dependent on adenosine elevations. Levels of the ELR+ angiogenic chemokine CXCL1 were found to be elevated in an adenosine-dependent manner in the lungs of ADA-deficient mice. Neutralization of CXCL1 and its putative receptor, CXCR2, in ADA-deficient lung lysates resulted in the inhibition of angiogenic activity suggesting that CXCL1 signaling through the CXCR2 receptor is responsible for mediating the observed increases in angiogenesis. Taken together, these findings suggest that adenosine plays an important role, via CXCL1, in the induction of pulmonary angiogenesis and may therefore represent an important therapeutic target for the treatment of pathological angiogenesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The susceptibility of most Bacillus anthracis strains to β-lactam antibiotics is intriguing considering that the B. anthracis genome harbors two β-lactamase genes, bla1 and bla2, and closely-related species, Bacillus cereus and Bacillus thuringiensis, typically produce β-lactamases. This work demonstrates that B. anthracis bla expression is affected by two genes, sigP and rsp, predicted to encode an extracytoplasmic function sigma factor and an antisigma factor, respectively. Deletion of the sigP/rsp locus abolished bla expression in a penicillin-resistant clinical isolate and had no effect on bla expression in a prototypical penicillin-susceptible strain. Complementation with sigP/rsp from the penicillin-resistant strain, but not the penicillin-susceptible strain, conferred β-lactamase activity upon both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsp in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsp homologues are required for inducible penicillin resistance in those species. Expression of the B. cereus or B. thuringiensis sigP and rsp genes in a B. anthracis sigP/rsp-null mutant confers resistance to β-lactam antibiotics, suggesting that while B. anthracis contains the genes necessary for sensing β-lactam antibiotics, the B. anthracis sigP/rsp gene products are insufficient for bla induction. ^ Because alternative sigma factors recognize unique promoter sequence, direct targets can be elucidated by comparing transcriptional profiling results with an in silico search using the sigma factor binding sequence. Potential σP -10 and -35 promoter elements were identified upstream from bla1 bla2 and sigP. Results obtained from searching the B. anthracis genome with the conserved sequences were evaluated against transcriptional profiling results comparing B. anthracis 32 and an isogenic sigP/rsp -null strain. Results from these analyses indicate that while the absence of the sigP gene significantly affects the transcript levels of 16 genes, only bla1, bla2 and sigP are directly regulated by σP. The genomes of B. cereus and B. thuringiensis strains were also analyzed for the potential σP binding elements. The sequence was located upstream from the sigP and bla genes, and previously unidentified genes predicted to encode a penicillin-binding protein (PBP) and a D-alanyl-D-alanine carboxypeptidase, indicating that the σ P regulon in these species responds to cell-wall stress caused by β-lactam antibiotics. ^ β-lactam antibiotics prevent attachment of new peptidoglycan to the cell wall by blocking the active site of PBPs. A B. cereus and B. thuringiensis pbp-encoding gene located near bla1 contains a potential σP recognition sequence upstream from the annotated translational start. Deletion of this gene abolished β-lactam resistance in both strains. Mutations in the active site of the PBP were detrimental to β-lactam resistance in B. cereus, but not B. thuringiensis, indicating that the transpeptidase activity is only important in B. cereus. I also found that transcript levels of the PBP-encoding gene are not significantly affected by the presence of β-lactam antibiotic. Based on these data I hypothesize that the gene product acts a sensor of β-lactam antibiotic. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme is the most common form of brain cancer that presents patients with a poor prognosis that has remained unchanged over the past few decades. The tumor suppressor phosphatase PTEN antagonizes one of the major oncogenic pathways involved in the progression of glioblastoma, and is frequently deleted in this cancer type. Contrary to our expectations, we found that most glioblastoma cells expressing endogenous PTEN also harbor basal PI-3K/AKT activation mainly attributable to impaired PTEN membrane localization. This alteration correlated with a shift of the adaptor protein NHERF1, which contributes to PTEN membrane recruitment in normal cells, from the membrane to the cytoplasm. In cells expressing membrane-localized NHERF1, only simultaneous PTEN and NHERF1 depletion achieved AKT activation, suggesting the involvement of additional PI-3K/AKT suppressor regulated by NHERF1. We identified these novel interactors of NHERF1 as the PHLPP1 and PHLPP2 phosphatases. ^ NHERF1 directly interacted and recruited both PHLPP proteins to the membrane and, through both NHERF1 PDZ domains, assembled ternary complexes consisting of PTEN-NHERF1-PHLPP. Only simultaneous depletion of PTEN and PHLPP1 significantly activated AKT and increased proliferation in cells with membrane-localized NHERF1. Analysis of glioblastoma human tumors revealed frequent loss of membrane-localized NHERF1. On the other hand, targeting of NHERF1 to the membrane achieved suppression of AKT and cell proliferation. Our findings reveal a novel mechanism for PI-3K/AKT regulation by the synergistic cooperation between two important tumor suppressors, PTEN and PHLPP, via the scaffold protein NHERF1. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). Two out of three T-cell receptor β (TCRβ) transcripts carry PTCs as a result of error-prone programmed rearrangements that occur at this locus during lymphocyte maturation. PTCs decrease TCRβ mRNA levels to a much greater extent than mRNAs transcribed from non-rearranging genes. This robust decrease in TCRβ mRNA levels is not a unique characteristic of the T-cell environment or the TCRβ promoter. The simplest explanation for this is that PTC-bearing TCRβ mRNAs elicit a stronger NMD response. An alternative explanation is NMD collaborates with another mechanism to dramatically decrease PTC-bearing TCRβ mRNA levels. ^ In my dissertation, I investigated the molecular mechanism behind the strong decrease in TCRβ mRNA levels triggered by PTCs. To determine the location of this response, I performed mRNA half-life analysis and found that PTCs elicited more rapid TCRβ mRNA decay in the nuclear fraction, not the cytoplasmic fraction. Although decay was restricted to the nuclear fraction, PTC-bearing TCRβ transcript levels were extremely low in the cytoplasm, a phenomenon that I named the nonsense-codon induced partitioning shift (NIPS). I established that NIPS shares several qualities with NMD, including its dependence on translation and NMD factors. Several lines of evidence suggested that NIPS results from PTCs eliciting retention of TCRβ transcripts in the nuclear fraction. This retention, as well as rapid TCRβ mRNA decay, most likely occurs in either the nucleoplasm or the outer nuclear membrane, based on analysis of nuclear and cytoplasmic markers in the highly purified nuclei I used for my studies. To further address the location of decay, I asked whether nuclear or cytoplasmic RNA decay factors mediated the destruction of PTC-bearing mRNAs. My results suggested that a nuclear component of the 3'-to-5' exosome, as well as an endonucleolytic activity, are involved in the destruction of PTC-containing TCRβ mRNAs. Individual endogenous NMD substrates had differential requirements for nuclear and cytoplasmic exonucleases. In summary, my results provide evidence that PTCs trigger multiple mechanisms involving multiple decay factors to remove and regulate mRNAs in mammalian cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health. Individuals and organizations with management responsibilities need to understand the risks to ecosystems and to humans from contact with contamination. Managers also need to understand how key contaminants vary over time and space in order to design and prioritize mitigation strategies. Tumacacori National Historic Park (NHP) is responsible for management of its water resources for the benefit of the park and for the health of its visitors. The existence of microbial contaminants in the park poses risks that must be considered in park planning and operations. The water quality laboratory at the Maricopa Agricultural Center (in collaboration with stakeholder groups and individuals located in the ADEQ-targeted watersheds) identified biological changes in surface water quality in impaired reaches rivers to determine the sources of Escherichia coli (E. coli); bacteria utilizing innovative water quality microbial/bacterial source tracking methods. The end goal was to support targeted watershed groups and ADEQ towards E. coli reductions. In the field monitoring was conducted by the selected targeted watershed groups in conjunction with The University of Arizona Maricopa Agricultural Center Water Quality Laboratory. This consisted of collecting samples for Bacteroides testing from multiple locations on select impaired reaches, to determine contamination resulting from cattle, human recreation, and other contributions. Such testing was performed in conjunction with high flow and base flow conditions in order to accurately portray water quality conditions and variations. Microbial monitoring was conducted by The University of Arizona Water Quality Laboratory at the Maricopa Agricultural Center using genetic typing to differentiate among two categories of Bacteroides: human and all (total). Testing used microbial detection methodologies and molecular source tracking techniques.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I-compounds are newly discovered covalent DNA modifications detected by the $\sp{32}$P-postlabeling assay. They are age-dependent, tissue-specific and sex-different. The origin(s), chemistry and function(s) of I-compounds are unknown. The total level of I-compounds in 8-10 month old rat liver is 1 adduct in 10$\sp7$ nucleotides, which is not neglectable. It is proposed that I-compounds may play a role in spontaneous tumorigenesis and aging.^ In the present project, I-compounds were investigated by several different approaches. (1) Dietary modulation of I-compounds. (2) Comparison of I-compounds with persistent carcinogen DNA adducts and 5-methylcytosine. (3) Strain differences of I-compounds in relation to organ site spontaneous tumorigenesis. (4) Effects of nongenotoxic hepatocarcinogenes on I-compounds.^ It was demonstrated that the formation of I-compounds is diet-related. Rats fed natural ingredient diet exhibited more complex I-spot patterns and much higher levels than rats fed purified diet. Variation of major nutrients (carbohydrate, protein and fat) in the diet, produced quantitative differences in I-compounds of rat liver and kidney DNAs. Physiological level of vitamin E in the diet reduced intensity of one I-spot compared with vitamin E deficient diet. However, extremely high level of vitamin E in the diet gave extra spot and enhanced the intensities of some I-spots.^ In regenerating rat liver, I-compounds levels were reduced, as carcinogen DNA adducts, but not 5-methylcytosine, i.e. a normal DNA modification.^ Animals with higher incidences of spontaneous tumor or degenerative diseases tended to have a lower level of I-compounds.^ Choline devoid diet induced a drastic reduction of I-compound level in rat liver compared with choline supplemented diet. I-compound levels were reduced after multi-doses of carbon tetrachloride (CCl$\sb4$) exposure in rats and single dose exposure in mice. An inverse relationship was observed between I-compound level and DNA replication rate. CCl$\sb4$-related DNA adduct was detected in mice liver and intensities of some I-spots were enhanced 24 h after a single dose exposure.^ The mechanisms and explanations of these observations will be discussed. I-compounds are potentially useful indicators in carcinogenesis studies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ts1 is a neurovirulent spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB (MoMuLV-TB). MoMuLV-TB causes T-cell lymphoma or lymphoid leukemia in mice after a long latency period whereas ts1 causes a progressive hindlimb paralytic disease after a much shorter latency period. In previous studies, it had been shown that the temperature-sensitive defect resided in the $env$ gene. At the restrictive temperature, the envelope precursor polyprotein, gPr80$\sp{env}$, is inefficiently processed intracellularly into a heterodimer consisting of two cleavage products, gp70 and Prp15E. This inefficient processing is correlated with neurovirulence. In this study, the nucleotide sequences of the env genes for both ts1 and MoMuLV-TB were determined, and the encoded amino acid sequences were deduced from the DNA sequences. There were four unique amino acid substitutions in the gPr80$\sp{env}$ of ts1. In order to determine which unique amino acid was responsible for the phenotypic characteristics of ts1, a set of hybrid genomes was constructed by exchanging restriction fragments between ts1 and MoMuLV-TB. NIH 3T3 cells were transfected with the hybrid genomes to obtain infectious hybrid viruses. Assays of the hybrid viruses showed that a Val-25$\to$Ile substitution in gPr80$\sp{env}$ was responsible for the temperature sensitivity, inefficient processing, and neurovirulence of ts1. In further studies, the Ile-25 in gPr80$\sp{env}$ was substituted with Thr, Ala, Leu, Gly, and Glu by site-directed mutagenesis to generate a new set of mutant viruses, i.e., ts1-T, -A, -L, -G, and -E, respectively. The rank order of the mutants for temperature sensitivity was: ts1-E $>$ ts1-G $>$ ts1-L $>$ ts1-A $>$ ts1 $>$ ts1-T. The degree of temperature sensitivity of each of the mutants also correlated with the degree of inefficient processing of gPr80$\sp{env}$. The mutant viruses were assayed for neurovirulence. ts1-T caused whole body tremor, ts1-A caused hindlimb paralysis, ts1-L caused paraparesis, but ts1-G and -E were not neurovirulent. These results show that inefficient processing of gPr80$\sp{env}$ is correlated with neurovirulence, but if processing of gPr80$\sp{env}$ is too inefficient there is no neurovirulence. Furthermore, the disease profile of each of the neurovirulent viruses depends on the degree of inefficient processing of gPr80$\sp{env}$. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recA gene is essential for SOS response induction, for inducible DNA repair and for homologous recombination in E. coli. The level of recA expression is significant for these functions. A basal level of about 1000 molecules of RecA protein is sufficient for homologous recombination of the cell and is essential for the induction of the SOS response. Based on previous observations, two models regarding the origin of the basal RecA protein were postulated. One was that it comes from the leaky expression of the LexA repressed promoter. The other was that it is from another weak but constitutive promoter. The first part of this thesis is to study these possibilities. An $\Omega$ cartridge containing the transcription terminator of gene 32 of T4 phage was exploited to define a second promoter for recA expression. Insertion of this $\Omega$ cartridge downstream of the known promoter gave rise to only minor expression. Purification and N-terminus sequencing of the RecA protein from the insertion mutant did not support the existence of a second promoter. To determine whether the basal RecA is due to the leaky expression of the known LexA repressed promoter, recA expression of a SOS induction minus strain (basal level expression of recA) was compared with that of a recA promoter down mutation recA1270. The result demonstrated that there is leaky expression from the LexA repressed promoter. All the evidence supports the conclusion that there is only one promoter for both basal and induced expression levels of recA.^ Several translation enhancer sequences which are complementary to different regions of the 16S rRNA were found to exist in recA mRNA. The leader sequence of recA mRNA is highly complementary to a region of the 16S rRNA. Thus it appeared that recA expression could be regulated at post-transcriptional levels. The second part of this thesis is focused on the study of the post-transcriptional control of recA expression. Deletions of the complementary regions were created to examine their effect on recA expression. The results indicated that all of the complementary regions were important for the normal expression of recA and their effects were post-transcriptional. RNA secondary structures of wild type recA mRNA was inspected and a stem-loop structure was revealed. The expression down mutations at codon 10 and 11 were found to stabilize this structure. The conclusions of the second part of this thesis are that there is post-transcriptional control for recA expression and the leader sequence of recA mRNA plays more than one role in the control of recA expression. ^