980 resultados para Biology, Botany|Agriculture, Plant Culture|Biology, Plant Physiology
Resumo:
The pathogenicity of three isolates of Alternaria alternata from Backhousia myrtifolia leaves was characterised and compared. Isolate BRIP 52222 was virulent compared to isolates BRIP 52223 and BRIP 52221. A comparison of inoculation methods showed that abrasion was more effective at establishing an infection than puncture wounding. Koch's postulates were assessed to confirm the pathogenicity of A. alternata on B. myrtifolia foliage and floral tissues using a conidial suspension of the most virulent isolate. Sporulation was triggered by incubating A. alternata (BRIP 52222) at 28 degrees C for 10 d under alternating 12 h black-light/12 h dark conditions on half-strength potato dextrose agar (PDA). In contrast, incubation of A. alternata under continuous black-light on either half- or full-strength PDA did not yield conidia. Host symptoms caused by inoculation with the pathogen included a brown-black discolouration of both foliage and floral tissues. Microscopic examination of cellular structures suggested that perturbation of oil glands may contribute to the tissue discolouration in B. myrtifolia caused by A. alternata infection. Oil gland structures can be disrupted during an active A. alternata infection, causing the leakage of essential oil followed by discolouration.
Resumo:
Nematode species Pratylenchus thornei and P. neglectus are the two most important root-lesion nematodes affecting wheat (Triticum aestivum L.) and other grain crops in Australia. For practical plant breeding, it will be valuable to know the mode of inheritance of resistance and whether the same set of genes confer resistance to both species. We evaluated reactions to P. thornei and P. neglectus of glasshouse-inoculated plants of five doubled-haploid populations derived from five resistant synthetic hexpaloid wheat lines, each crossed to the susceptible Australian wheat cultivar Janz. For each cross we determined genetic variance, heritability and minimum number of effective resistance genes for each nematode species. Distributions of nematode numbers for both species were continuous for all doubled-haploid populations. Heritabilities were high and the resistances were controlled by 4-7 genes. There was no genetic correlation between resistance to P. thornei and to P. neglectus in four of the populations and a significant but low correlation in one. Therefore, resistances to P. thornei and to P. neglectus are probably inherited quantitatively and independently in four of these synthetic hexaploid wheat populations, with the possibility of at least one genetic factor contributing to resistance to both species in one of the populations. Parents with the greatest level of resistance will be the best to use as donor parents to adapted cultivars, and selection of resistance to both species in early generations will be optimal to carry resistance through successive cycles of inbreeding to produce resistant cultivars for release.
Resumo:
Experiments were conducted to study the effect of time of digging and nursery-growing environment on the levels of non-structural carbohydrates in 'Festival' strawberry transplants (Fragaria xananassa) over 2 years in southeastern Queensland, Australia. We were interested in determining whether there was a strong relationship between the potential productivity of this material and reserves in the plants. First, bare-rooted plants were obtained from Stanthorpe in southern Queensland from early March to mid-April/late April. Second, bare-rooted plants were sourced from Stanthorpe (a warm-growing area) or from Toolangi in Victoria (a cool-growing area). In Year 1 of the experiments, the nursery material from the different treatments was grown at Nambour in southeastern Queensland and fruit yield determined. The total weight of nonstructural carbohydrates/plant increased as digging was delayed and was higher in the plants from Stanthorpe than the plants from Toolangi. Plants dug on 17 Mar. in Year 1 had higher weights of non-structural carbohydrates [292 mg/plant dry weight (DW)] than plants dug on 3 Mar. (224 mg/plant) and higher early yield to the end of June or to the end of July and higher total yield to mid-October adjusted by the length of the growing season for the different treatments. Plants dug on 1 Apr. (408 mg/plant) or on 13 Apr. (445 mg/plant) had higher reserves than the plants dug on 17 Mar. but lower yields. Only the differences in yields between the plants dug on 3 Mar. and 17 Mar. reflected the differences in carbohydrates. The stock from Stanthorpe had greater reserves (408 mg/plant) than the stock from Toolangi (306 mg/plant) but similar yields in Year 1 possibly because of poorer flowering in the nursery plants. It was concluded that carbohydrate reserves in transplants only partially reflect their productivity in this environment.
Resumo:
Gibberellic acid (GA3) induced a marked elongation of 2.5-centimeter shoot tips of Cuscuta chinensis Lamk. cultured in vitro. In terms of the absolute amount of elongation, this growth may be the largest reported for an isolated plant system. The response to hormone was dependent on an exogenous carbohydrate supply. The hormone-stimulated growth was due to both cell division and cell elongation. The growth response progressively decreased if GA3 was given at increasingly later times after culturing, but the decreased growth response could be restored by the application of indole-3-acetic acid (IAA) to the apex. Explants deprived of GA3 gradually lost their ability to transport IAA basipetally, but this ability was also restored by auxin application. The observations are explained on the basis that: (a) the growth of Cuscuta shoot tip in vitro requires, at least, both an auxin and a gibberellin; and (b) in the absence of gibberellin the cultured shoot tip explants lose the ability to produce and/or transport auxin.
Toxicity in Cuscuta reflexa Sucrose Content Decreases In Shoot Tips Upon Trehalose Feeding Trehalose
Resumo:
Trehalose, an {alpha},{alpha}-diglucoside, induced a rapid blackening and death of shoot tips of Cuscuta reflexa (dodder) cultured in vitro. The onset of toxic symptom was delayed if any of the several sugars which support the in vitro growth of Cuscuta was supplied with trehalose. The rate of trehalose uptake or its accumulation in the tissue was not affected by sugar cofeeding. The levels of total and reducing sugars declined appreciably in the trehalose-fed shoot tip explants compared to control tissue cultured in absence of a carbon source. This was not due to an increased rate of respiration of the trehalose-treated tissue. In shoot tips cultured in presence of both trehalose and sucrose, the decline in total and reducing sugars was curtailed. There was a marked fall in the level of sucrose; and invertase activity was higher in trehalose-fed shoot tips. The incorporation of label from [14C]glucose into sucrose in the shoot tip explant was reduced as early as 12 h of trehalose feeding. The results suggest that increased utilization of sucrose as well as an inhibition of its synthesis contribute to the drastic fall in the sucrose content upon trehalose feeding
Resumo:
In 2012, a project was initiated to assess if the soft rot disease of ginger in Australian fields was associated with pathogens other than Pythium myriotylum. Together with nine Pythium spp., ten isolates of a Pythium-like organism were also recovered from ginger with soft rot symptoms. These Pythium-like isolates were identified as Pythiogeton (Py.) ramosum based on its morphology and ITS sequences. In-vitro pathogenicity tests allowed confirmation of pathogenicity of Py. ramosum on excised carrot (Daucus carota), sweet potato (Ipomoea batatas) and potato (Solanum tubersum) tubers, although it was not pathogenic on excised ginger (Zingiber officinale) and radish (Raphanus sativus) rhizome/roots. In addition it was found to be pathogenic on bean (Phaseolus vulgaris), capsicum (Capsicum annuum) and cauliflower (Brassica oleracea var. botrytis) seedlings. This is the first record of Py. ramosum and its pathogenicity in Australia.
Resumo:
The rust fungus Masseeëlla capparis is reported for the first time in Australia on Flueggea virosa (Phyllanthaceae). This is the first species of Masseeëlla found in Australia. The rust is described and illustrated from Australian specimens. A discussion on species of Masseeëlla is provided. A reconstructed phylogeny with the Large Subunit region of ribosomal DNA indicated that Masseeëlla has an affinity with the Phakopsoraceae.
Resumo:
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.
Resumo:
In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O 2 • − ) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.
Resumo:
Serine hydroxymethyltransferase, the first enzyme in the pathway for interconversion of C1 fragments, was purified to homogeneity for the first time from any plant source. The enzyme from 72-h mung bean (Vigna radiata L.) seedlings was isolated using Blue Sepharose CL-6B and folate-AH-Sepharose-4B affinity matrices and had the highest specific activity (1.33 micromoles of HCHO formed per minute per milligram protein) reported hitherto. The enzyme preparation was extremely stable in the presence of folate or L-serine. Pyridoxal 5'-phosphate, ethylenediaminetetraacetate and 2-mercaptoethanol prevented the inactivation of the enzyme during purification. The enzyme functioned optimally at pH 8.5 and had two temperature maxima at 35 and 55°C. The Km values for serine were 1.25 and 68 millimolar, corresponding to Vmax values of 1.8 and 5.4 micromoles of HCHO formed per minute per milligram protein, respectively. The K0.5 value for L-tetrahydrofolate (H4folate) was 0.98 millimolar. Glycine, the product of the reaction and D-cycloserine, a structural analog of D-alanine, were linear competitive inhibitors with respect to L-serine with Ki values of 2.30 and 2.02 millimolar, respectively. Dichloromethotrexate, a substrate analog of H4folate was a competitive inhibitor when H4folate was the varied substrate. Results presented in this paper suggested that pyridoxal 5'-phosphate may not be essential for catalysis.The sigmoid saturation pattern of H4folate (nH = 2.0), one of the substrates, the abolition of sigmoidicity by NADH, an allosteric positive effector (nH = 1.0) and the increase in sigmoidicity by NAD+ and adenine nucleotides, negative allosteric effectors (nH = 2.4) clearly established that this key enzyme in the folate metabolism was an allosteric protein. Further support for this conclusion were the observations that (a) serine saturation exhibited an intermediary plateau region; (b) partial inhibition by methotrexate, aminopterin, O-phosphoserine, DL-{alpha}-methylserine and DL-O-methylserine; (c) subunit nature of the enzyme; and (d) decrease in the nH value from 2.0 for H4folate to 1.5 in presence of L-serine. These results highlight the regulatory nature of mung bean serine hydroxymethyltransferase and its possible involvement in the modulation of the interconversion of folate coenzymes.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.
Resumo:
Human CGI-58 (for comparative gene identification-58) and YLR099c, encoding Ict1p in Saccharomyces cerevisiae, have recently been identified as acyl-CoA-dependent lysophosphatidic acid acyltransferases. Sequence database searches for CGI-58 like proteins in Arabidopsis (Arabidopsis thaliana) revealed 24 proteins with At4g24160, a member of the alpha/beta-hydrolase family of proteins being the closest homolog. At4g24160 contains three motifs that are conserved across the plant species: a GXSXG lipase motif, a HX4D acyltransferase motif, and V(X)(3)HGF, a probable lipid binding motif. Dendrogram analysis of yeast ICT1, CGI-58, and At4g24160 placed these three polypeptides in the same group. Here, we describe and characterize At4g24160 as, to our knowledge, the first soluble lysophosphatidic acid acyltransferase in plants. A lipidomics approach revealed that At4g24160 has additional triacylglycerol lipase and phosphatidylcholine hydrolyzing enzymatic activities. These data establish At4g24160, a protein with a previously unknown function, as an enzyme that might play a pivotal role in maintaining the lipid homeostasis in plants by regulating both phospholipid and neutral lipid levels.
Resumo:
Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in further studies to improve biological realism in the modelling of monoterpene emissions from Scots pine forests. The increasing number of DEC measurements of oxygenated VOCs will probably enable better estimates of the role of these compounds in plant physiology and tropospheric chemistry. Keywords: disjunct eddy covariance, lag time determination, long-term flux measurements, proton transfer reaction mass spectrometry, Scots pine forests, volatile organic compounds
Resumo:
The respiratory rates of mycelia of the mesophilic fungus, Aspergillus niger, and the thermophilic fungus, Thermomyces lanuginosus, were comparable at their respective temperature optima for growth. The respiratory rate of A. niger was independent of changes in temperature between 15 and 40 C. The respiratory rate of T. lanuginosus increased with increase in temperature between 25 and 55 C.
Resumo:
Serine hydroxymethyltransferase from mammalian and bacterial sources is a pyridoxal-5'-phosphate-containing enzyme, but the requirement of pyridoxal-5'-phosphate for the activity of the enzyme from plant sources is not clear. The specific activity of serine hydroxymethyltransferase isolated from mung bean (Vigna radiata) seedlings in the presence and absence of pyridoxal-5'-phosphate was comparable at every step of the purification procedure. The mung bean enzyme did not show the characteristic visible absorbance spectrum of pyridoxal-5'-phosphate protein. Unlike the enzymes from sheep, monkey, and human liver, which were converted to the apoenzyme upon treatment with L-cysteine and dialysis, the mung bean enzyme similarly treated was fully active. Additional evidence in support of the suggestion that pyridoxal-5'-phosphate may not be required for the mung bean enzyme was the observation that pencillamine, a well-known inhibitor of pyridoxal-5'-phosphate enzymes, did not perturb the enzyme spectrum or inhibit the activity of mung bean serine hydroxymethyltransferase. The sheep liver enzyme upon interaction with O-amino-D-serine gave a fluorescence spectrum with an emission maximum at 455 nm when excited at 360 nm. A 100-fold higher concentration of mung bean enzyme-O-amino-D-serine complex did not yield a fluorescence spectrum. The following observations suggest that pyridoxal-5'-phosphate normally present as a coenzyme in serine hydroxymethyltransferase was probably replaced in mung bean serine hydroxymethyltransferase by a covalently bound carbonyl group: (a) inhibiton by phenylhydrazine and hydroxylamine, which could not be reversed by dialysis and or addition of pyridoxal-5'-phosphate; (b) irreversible inactivation by sodium borohydride; (c) a spectrum characteristic of a phenylhydrazone upon interaction with phenylhydrazine; and (d) the covalent labeling of the enzyme with substrate/product serine and glycine upon reduction with sodium borohydride. These results indicate that in mung bean serine hydroxymethyltransferase, a covalently bound carbonyl group has probably replaced the pyridoxal-5'-phosphate that is present in the mammalian and bacterial enzymes.