969 resultados para Biological Markers -- analysis
Resumo:
Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.
Resumo:
Fabry disease is caused by a deficiency of a-galactosidase A which leads to the progressive intra-lysosomal accumulation of ceramide trihexoside (CTH), also known as globotriaosylceramide (Gb3), in different cell types and body fluids. The clinical manifestations are multisystemic and predominantly affect the heart, kidney and central nervous system. The role of CTH in the pathophysiological process of Fabry disease is not established, and the link between the degree of accumulation and disease manifestations is not systematic. The use of CTH as a diagnostic tool has been proposed for several decades. The recent introduction of a specific treatment for Fabry disease in the form of enzyme replacement therapy (ERT) has led to the need for a biological marker, in place of a clinical sign, for evaluating the efficacy of treatment and also as a tool for following the long term effects of treatment. The ideal biomarker must adhere to strict criteria, and there should be a correlation between the degree of clinical efficacy of treatment and a change in its concentration. This review of the literature assesses the utility of CTH as a diagnostic tool and as a marker of the efficacy of ERT in patients with Fabry disease. Several techniques have been developed for measuring CTH; the principles and the sensitivity thresholds of these methods and the units used to express the results should be taken into consideration when interpreting data. The use of CTH measurement in Fabry disease should be re-evaluated in light of recent published data.
Resumo:
BACKGROUND: Subclinical hypothyroidism has been associated with systolic and diastolic cardiac dysfunction and an elevated cholesterol level, but data on cardiovascular outcomes and death are limited. METHODS: We studied 2730 men and women, aged 70 to 79 years, with baseline thyrotropin (TSH) measurements and 4-year follow-up data to determine whether subclinical hypothyroidism was associated with congestive heart failure (CHF), coronary heart disease, stroke, peripheral arterial disease, and cardiovascular-related and total mortality. After the exclusion of participants with abnormal thyroxine levels, subclinical hypothyroidism was defined as a TSH level of 4.5 mIU/L or greater, and was further classified according to TSH levels (4.5-6.9, 7.0-9.9, and > or = 10.0 mIU/L). RESULTS: Subclinical hypothyroidism was present in 338 (12.4%) of the participants. Compared with euthyroid participants, CHF events occurred more frequently among those with a TSH level of 7.0 mIU/L or greater (35.0 vs 16.5 per 1000 person-years; P = .006), but not among those with TSH levels between 4.5 and 6.9 mIU/L. In multivariate analyses, the risk of CHF was higher among those with high TSH levels (TSH of 7.0-9.9 mIU/L: hazard ratio, 2.58 [95% confidence interval, 1.19-5.60]; and TSH of > or = 10.0 mIU/L: hazard ratio, 3.26 [95% confidence interval, 1.37-7.77]). Among the 2555 participants without CHF at baseline, the hazard ratio for incident CHF events was 2.33 (95% confidence interval, 1.10-4.96; P = .03) in those with a TSH of 7.0 mIU/L or greater. Subclinical hypothyroidism was not associated with increased risk for coronary heart disease, stroke, peripheral arterial disease, or cardiovascular-related or total mortality. CONCLUSIONS: Subclinical hypothyroidism is associated with an increased risk of CHF among older adults with a TSH level of 7.0 mIU/L or greater, but not with other cardiovascular events and mortality. Further investigation is warranted to assess whether subclinical hypothyroidism causes or worsens preexisting heart failure.
Resumo:
BACKGROUND: Activation of coagulation and fibrinolysis play a role in the pathophysiology of experimental arthritis. Objective: To determine the extent of activation of the coagulation and fibrinolytic pathways in different joint diseases in humans and to ascertain the factors that may influence fibrin deposition within the joint. METHODS: Plasma from normal subjects (controls, n= 21) and plasma and synovial fluid samples from patients with rheumatoid arthritis (RA; n = 64), osteoarthritis (OA; n = 29), spondyloarthropathy (SpA; n = 22) and crystal arthritis (CA; n = 25) were analyzed for the levels of TF (tissue factor) and tissue factor pathway inhibitor (TFPI) activities, thrombin-antithrombin III (TAT) complexes, and F1 + 2 (thrombin fragment), fibrin d-dimer and thrombin-activated fibrinolysis inhibitor (TAFI) antigenic levels. The measurements were analyzed by pairwise correlation with each other as well as with standard parameters of inflammation [C-reactive protein (CRP), joint leukocyte count]. Inter-group comparisons were performed to look for disease-specific differences. RESULTS: Compared with healthy controls, patients with joint diseases had higher levels of TAT, F1 + 2 and d-dimers in their plasma. In the synovial fluid, TF activity, TAT, d-dimers, and TAFI were significantly higher in inflammatory arthritides than in OA. The levels were highest in RA patients. In the plasma, TF activity was correlated with TAT and d-dimer levels with CRP, TFPI, and TAT. In the synovial fluid, TF activity correlated with plasma CRP levels, synovial fluid leukocyte count, and synovial TAT and TAFI levels. In addition, synovial d-dimers correlated with CRP, and synovial TAFI levels were correlated with synovial F1 + 2 and TAT. CONCLUSIONS: Activation of the coagulation and fibrinolytic cascades in the joint and in the circulation is evident in both inflammatory and degenerative joint diseases. Within the joint, inflammatory mechanisms leading to TF-mediated activation of the coagulation pathway and subsequent fibrin deposition is the most likely explanation for the observed findings. In the plasma, the link between inflammation (CRP increase) and TF activation is weak, and a non-TF-mediated mechanism of coagulation activation could explain these findings. RA is characterized by significantly higher levels of TAT in the synovial fluid and plasma than other arthritides. Although fibrinolytic activity is linked to inflammation, the increased amounts of TAFI in the joint, particularly in RA, may explain why fibrin formation is so prominent in this condition compared with other joint diseases.
Resumo:
BACKGROUND: During stress, vasopressin is a potent synergistic factor of CRH as a hypothalamic stimulator of the HPA axis. The measurements of CRH and vasopressin levels are cumbersome because of their instability and short half-life. Copeptin is a more stable peptide stoichiometrically released from the same precursor molecule. The aim of our study was to compare copeptin and cortisol levels in different stress situations. METHODS: Three groups of patients with increasing stress levels were investigated: a) healthy controls without apparent stress (n=20), b) hospitalized medical patients with moderate stress (n=25) and c) surgical patients 30 minutes after extubation, with maximal stress (n=29). In all patients we assessed cortisol and copeptin levels. Copeptin levels were measured with a new sandwich immunoassay. RESULTS: Cortisol levels in controls were (median, IQ range, 486 [397-588] nmol/L), not significantly different as compared to medical patients (438 [371-612] nmol/L, p=0.69). Cortisol levels in surgical patients after extubation were higher (744 [645-1062] nmol/L p<0.01 vs controls and medical patients). Copeptin levels in controls were 4.3 [3.2-5.5] pmol/L, which was lower as compared to medical patients (17.5 [6.4-24.1], p<0.001) and surgical patients after extubation (67.5 [37.8-110.0] pmol/L, p<0.001). The correlation between copeptin levels and cortisol was r=0.46, p<0.001. CONCLUSION: Copeptin is a novel marker of the individual stress level. It more subtly mirrors moderate stress as compared to cortisol values.
Resumo:
This report gives a comprehensive and up-to-date review of Alzheimer's disease biomarkers. Recent years have seen significant advances in this field. Whilst considerable effort has focused on A�_ and tau related markers, a substantial number of other molecules have been identified, that may offer new opportunities.This Report : Identifies 60 candidate Alzheimer's (AD) biomarkers and their associated studies. Of these, 49 are single species or single parameters, 7 are combinations or panels and 4 involve the measurement of two species or parameters or their ratios. These include proteins (n=34), genes (n=11), image-based parameters (n=7), small molecules (n=3), proteins + genes (n=2) and others (n=3). Of these, 30 (50%) relate to species identified in CSF and 19 (32%) were found in the blood. These candidate may be classified on the basis of their diagnostic utility, namely those which i) may allow AD to be detected when the disease has developed (48 of 75†= 64%), ii) may allow early detection of AD (18 of 75† = 24%) and iii) may allow AD to be predicted before the disease has begun to develop (9 of 75†= 12%). † Note: Of these, 11 were linked to two or more of these capabilities (e.g. allowed both early-stage detection as well as diagnosis after the disease has developed).Biomarkers: AD biomarkers identified in this report show significant diversity, however of the 60 described, 18 (30%) are associated with amyloid beta (A�_) and 9 (15%) relate to Tau. The remainder of the biomarkers (just over half) fall into a number of different groups. Of these, some are associated with other hypotheses on the pathogenesis of AD however the vast majority are individually unique and not obviously linked with other markers. Analysis and discussion presented in this report includes summaries of the studies and clinical trials that have lead to the identification of these markers. Where it has been calculated, diagnostic sensitivity, specificity and the capacity of these markers to differentiate patients with suspected AD from healthy controls and individuals believed to be suffering from other neurodegenerative conditions, have been indicated. These findings are discussed in relation to existing hypotheses on the pathogenesis of the AD and the current drug development pipeline. Many uncertainties remain in relation to the pathogenesis of AD, in diagnosing and treating the disease and many of the studies carried out to identify disease markers are at an early stage and will require confirmation through larger and longer investigations. Nevertheless, significant advances in the identification of AD biomarkers have now been made. Moreover, whilst much of the research on AD biomarkers has focused on amyloid and tau related species, it is evident that a substantial number of other species may provide important opportunities.Purpose of Report: To provide a comprehensive review of important and recently discovered candidate biomarkers of AD, in particular those with potential to reliably detect the disease or with utility in clinical development, drug repurposing, in studies of the pathogenesis and in monitoring drug response and the course of the disease. Other key goals were to identify markers that support current pipeline developments, indicate new potential drug targets or which advance understanding of the pathogenesis of this disease.Drug Repurposing: Studies of the pathogenesis of AD have identified aberrant changes in a number of other disease areas including inflammation, diabetes, oxidative stress, lipid metabolism and others. These findings have prompted studies to evaluate some existing approved drugs to treat AD. This report identifies studies of 9 established drug classes currently being investigated for potential repurposing.Alzheimer’s Disease: In 2005, the global prevalence of dementia was estimated at 25 million, with more than 4 million new cases occurring each year. It is also calculated that the number of people affected will double every 20 years, to 80 million by 2040, if a cure is not found. More than 50% of dementia cases are due to AD. Today, approximately 5 million individuals in the US suffer from AD, representing one in eight people over the age of 65. Direct and indirect costs of AD and other forms of dementia in the US are around $150 billion annually. Worldwide, costs for dementia care are estimated at $315 billion annually. Despite significant research into this debilitating and ultimately fatal disease, advances in the development of diagnostic tests for AD and moreover, effective treatments, remain elusive.Background: Alzheimer's disease is the most common cause of dementia, yet its clinical diagnosis remains uncertain until an eventual post-mortem histopathology examination is carried out. Currently, therapy for patients with Alzheimer disease only treats the symptoms; however, it is anticipated that new disease-modifying drugs will soon become available. The urgency for new and effective treatments for AD is matched by the need for new tests to detect and diagnose the condition. Uncertainties in the diagnosis of AD mean that the disease is often undiagnosed and under treated. Moreover, it is clear that clinical confirmation of AD, using cognitive tests, can only be made after substantial neuronal cell loss has occurred; a process that may have taken place over many years. Poor response to current therapies may therefore, in part, reflect the fact that such treatments are generally commenced only after neuronal damage has occurred. The absence of tests to detect or diagnose presymptomatic AD also means that there is no standard that can be applied to validate experimental findings (e.g. in drug discovery) without performing lengthy studies, and eventual confirmation by autopsy.These limitations are focusing considerable effort on the identification of biomarkers that advance understanding of the pathogenesis of AD and how the disease can be diagnosed in its early stages and treated. It is hoped that developments in these areas will help physicians to detect AD and guide therapy before the first signs of neuronal damage appears. The last 5-10 years have seen substantial research into the pathogenesis of AD and this has lead to the identification of a substantial number of AD biomarkers, which offer important insights into this disease. This report brings together the latest advances in the identification of AD biomarkers and analyses the opportunities they offer in drug R&D and diagnostics.��
Resumo:
OBJECTIVE: We evaluated whether subjects with long-lived parents show lower levels of cardiovascular risk factors, including the metabolic syndrome. METHODS: We analyzed data from a Swiss population-based sample (1163 men and 1398 women) aged 55-75 years from Lausanne. Participants were stratified by number of parents (0, 1, 2) who survived to 85 years or more. The associations of parental longevity with cardiovascular risk factors and related metabolic variables were analyzed using multiple linear regressions. RESULTS: Age-adjusted metabolic syndrome prevalence varied from 24.8%, 20.5% to 13.8% in women (P<0.05) and from 28.8%, 32.1% to 27.6% in men (not significant) with 0, 1 and 2 long-lived parents. The association between parental longevity and metabolic syndrome prevalence was particularly strong in women who had never smoked. In this group, women with 2 long-lived parents had lower Body Mass Index and smaller waist circumference. In never-smokers of both genders, mean (95% CI) adjusted High Density Lipoprotein-cholesterol levels were 1.64(1.61-1.67), 1.67(1.65-1.70) and 1.71(1.65-1.76) mmol/L for 0, 1 and 2 long-lived parents (P<0.01), respectively. The trend was not significant in former and current smokers. CONCLUSIONS: In women, not in men, parental longevity is associated with a better metabolic profile. The metabolic benefits of having long-lived parents are offset by smoking.
Resumo:
Evaluation of hepatic fibrosis is usually performed by histopathological examination of biopsies. However, this is an invasive and potentially dangerous procedure. Several studies have proposed serum biological markers of hepatic fibrosis. This communication evaluates the use of serum cytokines as markers of hepatic fibrosis in hepatitis C, schistosomiasis, and co-infection.
Resumo:
OBJECTIVE: Data about the consequences of laparoscopic adjustable gastric banding (LAGB) on phospho-calcic and bone metabolism remain scarce. SUBJECTS: We studied a group of 37 obese premenopausal women (age: 24-52 y; mean BMI = 43.7 kg/m2) who underwent LAGB. METHODS: Serum calcium, phosphate, alkaline phosphatase, parathormone (PTH), vitamin D3, serum C-telopeptides, IGFBP-3 and IGF-1 were measured at baseline, 6, 12, 18 and 24 months after surgery. Body composition, bone mineral content (BMC) and density (BMD) were measured using dual-X-ray absorptiometry (DXA) at baseline, 6, 12 and 24 months after surgery. RESULTS: There was no clinically significant decrease of calcemia; PTH remained stable. Serum telopeptides increased by 100% (P < 0.001) and serum IGFBP-3 decreased by 16% (P < 0.001) during the first 6 months, and then stabilized, whereas IGF-1 remained stable over the 2 y. BMC and BMD decreased, especially at the femoral neck; this decrease was significantly correlated with the decrease of waist and hip circumference. CONCLUSIONS: We concluded that there was no evidence of secondary hyperparathyroidism 24 months after LAGB. The observed bone resorption could be linked to the decrease of IGFBP-3, although this decrease could be attributable to other confounding factors. Serum telopeptides seem to be a reliable marker of bone metabolism after gastric banding. DXA must be interpreted cautiously during major weight loss, because of the artefacts caused by the important variation of fat tissue after LAGB.
Resumo:
Several studies have analyzed the relationship between androgenetic alopecia and cardiovascular disease (mainly heart disease). However few studies have analyzed lipid values in men and women separately. This case-control study included 300 patients consecutively admitted to an outpatient clinic, 150 with early onset androgenetic alopecia (80 males and 70 females) and 150 controls (80 males and 70 females) with other skin diseases. Female patients with androgenic alopecia showed significant higher triglycerides values (123.8 vs 89.43 mg/dl, p = 0.006), total cholesterol values (196.1 vs 182.3 mg/dl, p = 0.014), LDL-C values (114.1 vs 98.8 mg/dl, p = 0.0006) and lower HDL-C values (56.8 vs 67.7 mg/dl, p <0.0001) versus controls respectively. Men with androgenic alopecia showed significant higher triglycerides values (159.7 vs 128.7 mg/dl, p = 0.04) total cholesterol values (198.3 vs 181.4 mg/dl, p = 0.006) and LDL-C values (124.3 vs 106.2, p = 0.0013) versus non-alopecic men. A higher prevalence of dyslipidemia in women and men with androgenic alopecia has been found. The elevated lipid values in these patients may contribute, alongside other mechanisms, to the development of cardiovascular disease in patient with androgenic alopecia.
Resumo:
The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.
Resumo:
BACKGROUND The etiology of Ulcerative Colitis (UC) and Crohn's Disease (CD), considered together as Inflammatory Bowel Diseases (IBD), involves environmental and genetic factors. Although some genes are already known, the genetics underlying these diseases is complex and new candidates are continuously emerging. The CD209 gene is located in a region linked previously to IBD and a CD209 functional polymorphism (rs4804803) has been associated to other inflammatory conditions. Our aim was to study the potential involvement of this CD209 variant in IBD susceptibility. METHODS We performed a case-control study with 515 CD patients, 497 UC patients and 731 healthy controls, all of them white Spaniards. Samples were typed for the CD209 single nucleotide polymorphism (SNP) rs4804803 by TaqMan technology. Frequency comparisons were performed using chi2 tests. RESULTS No association between CD209 and UC or CD was observed initially. However, stratification of UC patients by HLA-DR3 status, a strong protective allele, showed that carriage of the CD209_G allele could increase susceptibility in the subgroup of HLA-DR3-positive individuals (p = 0.03 OR = 1.77 95% CI 1.04-3.02, vs. controls). CONCLUSION A functional variant in the CD209 gene, rs4804803, does not seem to be influencing Crohn's disease susceptibility. However, it could be involved in the etiology or pathology of Ulcerative Colitis in HLA-DR3-positive individuals but further studies are necessary.
Resumo:
Introduction. Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods. Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results. Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion. The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of antioxidant vitamins below 66% of RDA and alteration in endogenous levels of substances with antioxidant capacity are related to redox imbalance in critical ill patients. Therefore, intake of antioxidant vitamins should be carefully monitored so that it is as close as possible to RDA.